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Generative Models
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Administrative

e A3isout. Due May 28.
e Milestone was due May 17th (pay attention to the date)

o Read website page for milestone requirements.

o Need to Finish data preprocessing and initial results by then.
e Midterm and A2 grades will be out this week
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x >y
Examples: Classification, regression,

object detection, semantic
segmentation, image captioning, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x >y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Classification
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x>y

A cat sitting on a suitcase on the floor
Examples: Classification, regression,
object detection, semantic Image captioning
segmentation, image captioning, etc.

lmage is.CCO Public domain,
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https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x >y

Examples: Classification, regression, DOG, DOG, CAT
object detection, semantic

segmentation, image captioning, etc. Object Detection
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x >y

GRASS, CAT, TREE,
Examples: Classification, regression, SKY

object detection, semantic

segmentation, image captioning, etc. Semantic segmentation
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Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, dimensionality
reduction, density estimation, etc.
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Supervised vs Unsupervised Learning
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Examples: Clustering, dimensionality

K-means clustering
reduction, density estimation, etc.
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https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, dimensionality
reduction, density estimation, etc.

Fei-Fei Li, Ehsan Adeli

original data space

component space

2-d

Principal Component Analysis
(Dimensionality reduction)

.
o .

Lecture13- 10

May 16, 2024



http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

1-d density estimation

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, dimensionality : . o
reduction, density estimation, etc. 2-d density estimation

Modeling p(x) S
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https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning

Data: (x, y) Data: x

X is data, y is label Just data, no labels!

Goal: Learn a functionto map x >y Goal: Learn some underlying hidden

structure of the data
Examples: Classification, regression,
object detection, semantic Examples: Clustering, dimensionality
segmentation, image captioning, etc. reduction, density estimation, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map
X->y

Examples: Classification,
regression, object detection,
semantic segmentation,
image captioning, etc.

Fei-Fei Li, Ehsan Adeli

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
density estimation, etc.

Lecture13- 13

Self-Supervised Learning

Data: (x, pseudo generated y)
No manual labels!

Goal: Learn to generate good
features (reduce the data to
useful/generic features)

Example: Classification in
downstream applications
where we have limited data

May 16, 2024



Generative Modeling

Given training data, generate new samples from same distribution

J4 learning sampling J
pmodel(x) |:> 4

Training data ~ pyat,(X

Objectives:
1. Learn pmogel(X) that approximates pyaia(X)
2. Sampling new x from pmogel(X)
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Generative Modeling

Given training data, generate new samples from same distribution

J‘ learning sampling FI
pmodel(x) |:> ™ 4

Training data ~ pyat,(X

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve for pogel(X)
- Implicit density estimation: learn model that can sample from poqe1(X) Without
explicitly defining it.
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Why Generatlve Models7

- Realistic samples for artwork, super-resolution, colorization, etc.

- Learn useful features for downstream tasks such as classification.

- Getting insights from high-dimensional data (physics, medical imaging, etc.)

- Modeling physical world for simulation and planning (robotics and reinforcement
learning applications)

- Many more....

Flgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) Phillip Isola et al. 2017. Reproduced with authors permission (3) BAIR Blog.
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https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/

Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density AELEY CE
Fully Visible Belief Nets / \ GSN
- NADE —* :
_ MADE Variational Markov Chain

- PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models Direct

Today: discuss 3 most popular GAN
types of generative models Generative models
today L
Explicit density Implicit density
Tractable density Approximate density MELEY Gl

Fully Visible Belief Nets / \ GSN

- NADE — :

- MADE Variational Markov Chain

- | PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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PixelRNN and PixelCNN

(A very brief overview)
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Fully visible belief network (FVBN)

Explicit density model

p(IE) :p(wlawa")wn)

T T

Likelihood of Joint likelihood of each
image x pixelin the image
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(x) = Hp(wz-|x1, ooy Ti—1)
e

Likelihood of Probability of i’th pixel value
image x given all previous pixels

Then maximize likelihood of training data
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Fully visible belief network (FVBN)

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(x) = Hp(wz-|x1, ooy Ti—1)
e

Likelihood of Probability of i’th pixel value
Image X given all previous pixels
Complex distribution over pixel
values => Express using a neural

Then maximize likelihood of training data network!
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Recurrent Neural Network
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PiXGlRN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)
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PiXGlRN N [van der Oord et al. 2016]

Generate image pixels starting from corner

i

© 0 O O O

Dependency on previous pixels modeled
using an RNN (LSTM)
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PiXGlRN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

o O

© O O

© 0 O O
© 0 O O O
© 0 ©0 O O
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PiXGlRN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow in
both training and inference!

o O—

o O

© O O

© 0 0 O
© 0 ©0 O O
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PiXGICN N [van der Oord et al. 2016]

Still generate image pixels starting from

corner
. . 417\\
Dependency on previous pixels now modeled
using a CNN over context region / / /
(masked convolution)

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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PiXGICN N [van der Oord et al. 2016]

Still generate image pixels starting from

corner

. . ‘Aj\\
Dependency on previous pixels now modeled
using a CNN over context region / /
(masked convolution)

Training is faster than PixelRNN

(can parallelize convolutions since context region
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of the
network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.
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Generation Samples

ot MAG ASLET L
GRS Ny X

S o
Ellﬂlﬁ.ﬂﬁ ﬂliﬁb"ﬁﬁﬂ.

32x32 CIFAR-10 32x32 ImageNet

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission
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PixelRNN and PixelCNN

Pros:

Con:

Can explicitly compute likelihood
p(x)

Easy to optimize

Good samples

Sequential generation => slow

Fei-Fei Li, Ehsan Adeli

Improving PixelCNN performance

Gated convolutional layers
Short-cut connections

Discretized logistic loss
Multi-scale

Training tricks
Etc...

Van der Oord et al. NIPS 2016
Salimans et al. 2017 (PixelCNN++)
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Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density AELEY CE
Fully Visible Belief Nets / \ GSN
- NADE —* :
_ MADE Variational Markov Chain

- PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Variational
Autoencoders (VAE)
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So far...
PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

po(z) = | | po(@ile1, .., mi-1)
=1
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So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:
po(z) = | | po(@ile1, .., mi-1)
i=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

No dependencies among pixels, can generate all pixels at the same time!

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Fei-Fei Li, Ehsan Adeli
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So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:
po(z) = | | po(@ile1, .., mi-1)
i=1

Variational Autoencoders (VAEs) define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

No dependencies among pixels, can generate all pixels at the same time!

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Why latent z?

Fei-Fei Li, Ehsan Adeli
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from
unlabeled training data

Decoder

Features yA ﬁﬁi \’
| Encoder Eg@
Input data T gsﬁzg

e R T
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from
unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 7y

ion?
reduction? Decoder

Features yA ﬁﬁi \’
| Encoder Eg@
Input data T gsﬁzg

e R T
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Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from
unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 7y

ion?
reduction? Decoder

A: Want features to

\ "“:-' 1= ) »-\’ 7
capture meaningful Features < hﬁ} %
factors of variation in ,"? A
data Encoder 1 »“g @
R e o ¥ N

Input data T -E = .E
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Some background first: Autoencoders

How to learn this feature
representation?

Train such that features
can be used to
reconstruct original data
“Autoencoding” -
encoding input itself

Input data

Reconstructed

input data

L

Features

A

Decoder

A

Encoder

Lecture 13 -

Reconstructed data

e i = I

b B N
e RS Pl
-EH;.E

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data
. [‘m— , ;

BN e

TR
s < B

40  May 16,2024
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Some background first: Autoencoders Reconstructed data

e i = I

Eggjgiz :222:]2?:32?5 can L Loss function: Doesn’t use labels! sgg

original data |z — £||2 « -
T -HT‘ M&

I Encoder: 4-layer conv
* Decoder: 4-layer upconv

Decoder

In utlc_lata

]
a4 §o= |

m'ﬁ -_h 5 b
Encoder .Eﬁ@

Features Z

Input data T asgg
B < IS
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Some background first: Autoencoders

Reconstructed A
input data 3

Decoder

Features A \ After training,

' throw away decoder
Encoder

Input data T

Fei-Fei Li, Ehsan Adeli
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Some background first: Autoencoders

Transfer from large, unlabeled

dataset to small, labeled dataset. Loss function

(Softmax, etc) bird  plane
/ '\ dog deer  truck
Predicted Label
| ; Train for final task
Classifier Fine-tune . .
Encoder can be used encoder (somet;lrr;es with
to initialize a Features z jointly with small data)
supervised model ¥ classifier
Encoder
Input datz z oo R
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Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed T Features capture factors of

input data 5 variation in training data.
Decoder

But we can’t generate new images
Features 2 from an autoencoder because we
$ don’t know the space of z.

Encoder

How do we make autoencoder a
Input data T generative model?
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume trainingdata {2V} is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional h

po~(z | 2(9)

Sample from
true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume trainingdata {2V} is generated from the distribution of unobserved (latent)
representation z

Intuition (remember from autoencoders!): x
isanimage, zis latent factors used to

Sample from : : :
generate x: attributes, orientation, etc.

true conditional h
po~(z | 2(9)

Sample from
true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters  9*
of this generative model given training data x.

Sample from
true conditional h

po~(z | 2(9)

Sample from
true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters  9*
of this generative model given training data x.

Sample from
true conditional h

po~(z | 2(9)

How should we represent this model?

Sample from
true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters  9*
of this generative model given training data x.

Sample from
true conditional h

po~(z | 2(9)

How should we represent this model?

Choose prior p(z) to be simple, e.g. Gaussian.
Reasonable for latent attributes, e.g. pose, how

Sample from much smile.

true prior

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

vl J"’"""”"’bbz We want to estimate the true *
| parameters
“ “ ‘ ‘ ‘ ‘ ‘ “ of this generative model given training data x.

Sample from
true conditional h

How should we represent this model?

po-(z | 2) |
Decoder Choose prior p(z) to be simple, e.g. Gaussian.
network Reasonable for latent attributes, e.g. pose, how
Sample from much smile.
trge prior >
29 ~ py (2)

Conditional p(x|z) is complex (generates image)

/\ => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters  9*
of this generative model given training data x.

Sample from
true conditional h

po- (T | Z(i)) |

How to train the model?

Decoder
network

Sample from
true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters  9*
of this generative model given training data x.

Sample from

How to train the model?

true conditional X
po-(z | 29) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
trge prior > J‘pe pe a:|z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

We want to estimate the true parameters  9*
of this generative model given training data x.

Sample from

How to train the model?

true conditional X
po-(z | 29) Learn model parameters to maximize likelihood
Decoder of training data
network
Sample from
true prior > = [ po(2)py(z|z)dz

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Fei-Fei Li, Ehsan Adeli Lecture 13- 55 May 16, 2024



Variational Autoencoders: Intractability
v

Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
v V

Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
® \/ v
Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

/‘

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
® \/ v

Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

/‘

Intractable to compute p(x|z) for every z!

log p(z) =~ log % S p(z|29), where 20 ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability
@ \/ v

Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

Posterior density:  Dpo(2|x) = po(z|2)pe(2)/po(z)
!

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Intractability

Data likelihood: Pe(z) = | pe(2)pe(z|2)dz

Posterior density also intractable: po(z|z) = po(x|2)pe(2)/po(T)

Solution: In addition to modeling pg(x|z), learn q4(z|x) that approximates the true
posterior pg(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the data
likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from only
the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders

log pg(z'V) = E, qy(zla®) {logpg(x(i))} (pe(z'?) Does not depend on z)
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Variational Autoencoders

log pg(z'V) = E, qy(zla®) {logpg(x(i))} (pe(z'?) Does not depend on z)

/

Taking expectation wrt. z (using
encoder network) will come in
handy later
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Variational Autoencoders

log py(z")) = E. q,(zlz) {logpg(x(i))} (pe (') Does not depend on z)

(4)
=E, llog po(a™ | z)pg(z)] (Bayes’ Rule)
po(z | 2™)
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Variational Autoencoders

log po(z(V) = E, q,(z]z®) {logpg(a;(i))} (pe(z'?) Does not depend on z)

I (4)
= E, |log po(z™™ | z)pg(z)] (Bayes’ Rule)
_ po(z | 2®)
i (4) (4)
= E, |log po(z™” | z)pg(z) 42 | @ : )] (Multiply by constant)
|7 pez ] 2) ez | 2®)
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Variational Autoencoders

log pp () = E. q,(zlz) {logpg(x(i))} (pe(z'?) Does not depend on z)

I (4)
=E, |log po(a™™ | z)pg(z)] (Bayes’ Rule)
_ po(z | 2®)
I (4) (4)
=E, |log po(a™ | z)pg(z) 42| @ : )] (Multiply by constant)
_ po(z | 2))  qy(z | =)

ge(z | )
po(z | @)

gs(2 | )

=E. |logpy(z"¥ | z)} ~E. [1og 07

] +E, [log ] (Logarithms)
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Variational Autoencoders

log pg (V) = E, g, (2]z®) {logpg(x(i))} (po (') Does not depend on z)

I (4)
=E. |log po(a™ | Z)pg(Z)] (Bayes’ Rule)
_ po(z | )

po(z'™ | 2)po(2) qs(2 | 27)
po(z [ 2@)  qy(z | 2)

=E, |log ] (Multiply by constant)

_ B, [logpp(a® | 2)] — B, [1og & 129 op 21T 1 ithms

o e e | B e ey (ot

=E. [logps(s | )] — Dicr(as(2 | 27) || po(2)) + Drcr(ao(= | #7) || po(2 | 29))
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms
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Variational Autoencoders

log pg (V) = E, g, (2]z®) {logpg(x(i))} (po (') Does not depend on z)

I (4)
=E. |log po(a™ | Z)pg(Z)] (Bayes’ Rule)
_ po(z | )

po (x| 2)pe(2) go (2 | 2V)
po(z [ 2@)  qy(z | 2)

=E, |log ] (Multiply by constant)

’ y gg(z | z1) go(z | ) .
= E. |log pg 2| 2 } —E., [lo —— |+ E, |log———= Logarithms)
— E. [logpe(z® | 2)| = Dicr(go(z | 2)|1ps(2)) + Dicr(as(z | #?) || pa(z | 2®))
Decoder network gives pg(x|z), can This KL term (between Pe(Z’|X) intractable (saw earlier),
compute estimate of this term through Gaussians for encoder and z can’t compute this KL term :(
sampling (need some trick to differentiate  prior) has nice closed-form But we know KL divergence

always >=0.

through sampling). solution!
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Variational Autoencoders

log pg (V) = E, g, (2]z®) {logpg(x(i))} (po (') Does not depend on z)

/

— Ez
We want to
maximize the
data =E,
likelihood
— Ez
— EZ

Decoder network gives pg(x|z), can
compute estimate of this term through

sampling.

Fei-Fei Li, Ehsan Adeli

o, 2o | 2)po(2)
(@) -
polz [20)
po (e | 2)po(2) as(z | )
polz [2)  qo(z [ 20)

i (4) (9)
(4) _ gs(2 | 2™) qs(z | &)
_logpg(x | z)} E, [log 20 (2) Po(z | 2)

] (Bayes’ Rule)

log ] (Multiply by constant)

] +E, [log ] (Logarithms)

log po(a) | 2)] = Dicr.(as(z | 27 | o(2)) + Dicr(ao(z | @) [ po(z | o))

f f

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!

Po(z|x) intractable (saw earlier),
can’t compute this KL term :(
But we know KL divergence
always >=0.

Lecture 13- 69
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Variational Autoencoders

log pg(z(V) = By i2®) {logpg(a;(i))} (pe(z'?) Does not depend on z)

I (4)
/ =E. |log po(a™ | Z)(’?)O(Z)] (Bayes’ Rule)
We want to . po(z | zt)) "
maximizethe [ pe(z | 2)pe(2) gz | zV) ,
data —E, _log ez [2®)  gg(z [ 20) (Multiply by constant)

likelihood

po(2) po(z | z®
=B, [logpo(+? | 2)] ~ Dicras(z | ) | po())|+ Dicr oz | @

] _ () (2)
= E, |logpe(z@ | z)} - E, [log M] +E, [log 9 | T )] (Logarithms)
(4)

)llpo(z | 29))
£(z9.0.¢) >0

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)
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Variational Autoencoders

log po(z(V) = By i2®) {logpg(a:(i))} (pe(z'?) Does not depend on z)
po(z™) | 2)po(2)
po(z | )
po(z™) | 2)po(2) gs(2 | 27)

po(z [ 2@)  qy(z | 2)

= H.. log ] (Bayes’ Rule) Encoder:
! make approximate
posterior distribution

close to prior

Decoder:
reconstruct —<UE, |log
the input data

] (Multiply By constant)

ge(z | )

. (i))
(2) } —_E [1 M log 222 1= J L ith
o) x z » 1o o) . ogarithms
gp@( | ) g pg(z) g pG(Z | CE(Z)) ( g )
|

—1B. [log po(2 | 2)] — Dici gz | e 1p0(2)|+ Dicr(go(= | 2

£(z9.0,¢)

Tractable lower bound which we can take
gradient of and optimize! (pg(x|z) differentiable,
KL term differentiable)

B

|| po(2 | x(i))z

(i))
>0
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(s” | 2)] ~ Drcs(as(z | 29) | po(2)

N\ -’

£(z9, 0, ¢)
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logps(+” | 2)] —]DKL<q¢<z kR Hpe<z>>\

L(z?,0,9)

Let’s look at computing the KL divergence
between the estimated posterior and the
prior given some data

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

B [logpo(x” | 2)] ~[Patas(z |29 1p0)

L(z?,0,9)

Hz|x Zz|x
Encoder network
Wil S

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

B [logpo(x” | 2)] ~[Patas(z |29 1p0)

L(z?,0,9)

Dy, (N(/J’z|x7 Ezla:)HN(O?I))

Have analytical solution

Make approximate
posterior distribution
close to prior

Hz|x Zz|x
Encoder network
Wil S

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

(2) (2)
B [logp@(x | Z)] Dicrlas(z 1 277) [ po(2) Not part of the computation graph!

-

L(,6,0) X
<
_ Sample z from z|a: ~ N(,Ll,z|a,, Zzlw)
Make approximate
posterior distribution /
close to prior Hz|x Zz|x
Encoder network \/‘
9 (2|)
Input Data b
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Va riatiOn a l AUtOenCOd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the Sample € ~~ N(O’ I)

likelihood lower bound
Z = M2z + €Oz

E. |logpo(2) | 2)| |- Dicrlas(z | 29) || po(2))

-

L(z?,0,9)

yA
Sample z from z|:c ~ N(Mz|a;, Zz|:1:)

/

Hz|x Zz|x
Encoder network
Wil S

Input Data i
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Va riatiOn a l AUtOenCOd ers Reparameterization trick to make

sampling differentiable:

Putting it all together: maximizing the Sample € ~ N(O, T

likelihood lower bound Input to
L the graph
E. [logpo(a” | 2)] |- Diceaaz | 29) 1 pa(2) — Mzl
L(z",8,0) Part of computation graph
yA

Sample z from z|:c ~ N(Mz|a;, Zz|:1:)

/

I‘LZ|$ Ezlx
Encoder network
Wil S

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpa(e? | 2)] |- Dicslaolz | 2) | po(2)) K|z Yz

L(z® 0, ¢) Decoder network \/
po(x|z)

yA
Sample z from z|:c ~ N(Mz|a;, Zz|:1:)

/

Hz|x Zz|x
Encoder network
Wil S

Input Data b
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Variational Autoencoders

Maximize likelihood of original
input being reconstructed

Putting it all together: maximizing the

z
likelihood lowerV /v \
E. [logpo(s” | 2)] |PR7 (as(z | 29) | po(2) K|z i)z
L(zD,0, ) Decoder network \/
po(x|z)

yA
Sample z from z|:c ~ N(Mz|a;, Zzlw)

/

Hz|x Zz|x
Encoder network
Wil S

Input Data b
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Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound /37 \

E. [logpe(x(i) | Z)} — Drer(gs(z | 29) || po(2)) Hx|z I
g(m(i)’ 0,0) Decoder network \/
po(x|z)
For every minibatch of input <
data: compute this forward pass, Samplezfrom 2|z ~ N(.u'z|:1:7 Yz)
and then backprop! /
I‘LZ|$ Ezlx
Encoder network \/‘
q¢(2|z)
Input Data b
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Variational Autoencoders: Generating Data!

Our assumption about data generation
process

Sample from
true conditional h

po (T | Z(i)) |
Decoder
network

Sample from

true prior >

29 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Now given a trained VAE:

Our assumption about data generation use decoder network & sample z from prior!
process
Sample from I
true conditipnal X samplex|zfrom |z ~ N(.u'mlza Zmlz)
Po-(x | Z(l)) / \
Decoder
network Fez|z Za:lz
tsampl? from Decoder network \/
rue prior
0 2 po(x|2)
2% ~ pg (2) <

Samplezfrom z ~ N(0, )
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Generating Data!

ional Autoencoders:

lat

Var

Use decoder network. Now sample z from prior!

QAN NANNNANNNNSNSNNNNS
QAN EHELEALLLL LB NN~
QAL LLLVYYY N~~~
QAVVUININ Ly oot ©YVOVV® W~~~
QAVODHIHINNKVWWWBVIYIVIY W - —-—
QAOODHINININMNHOEBPBDIOVIY W w - —
QAOQOMIMMNMNNKMDIOIY D @ = ——
QOODOMMNMMNMNNM®OO DD D w e — —
OODMMMN MMM ONMWDD DD D e e —
QOMME MMM N OO LW e on o e = —
QOMMM M M " " 000000 o o e —
Ol 4080902070000 00 00 & & B~ 0~ P~ o~
NS N K N R ol ol ol R R
NS N K G i al ol ol Rl S S
Sl odogororrororrrTrTaanNN~N
SAdadadddocrrrrr T TIIRIINN
SAddddgorrrrrrFPTITITIXINN
SddagogorororrrsrrrrrIr2r2nanN
% I e glie plte l ol all ol ol ool ol ol ol O AR NI NN NN

N

xR

8

A s

N

= N

ru\\

ATwMH N

ﬂ/

c

2 N

N B

> 3

a

m =<
(@]

%2 =
mz
5 3
© D
S &
(]
()

Sample zfrom 2z ~ N (0, 1)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Generating Data!

ional Autoencoders:

lat

Var

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

QAN NANNNANNNNSNSNNNNS
QAN EHELEALLLL LB NN~
QAL LLLVYYY N~~~
QAVVUININ Ly oot ©YVOVV® W~~~
QAVODHIHINNKVWWWBVIYIVIY W - —-—
QAOODHINININMNHOEBPBDIOVIY W w - —
QAOQOMIMMNMNNKMDIOIY D @ = ——
QOODOMMNMMNMNNM®OO DD D w e — —
QODMIN MMM N WD DD D e e —
QOMME MMM N OO LW e on o e = —
QOMMM M "0 0000 oo e - —
QAN 0P000000 00 00 o~ 0~ 0~ P~ i~ o~
R N N N Rl ol U o
NS N K G i al ol ol Rl S S
i dogorororororraaanN~N
SAdadadddocrcrrrr T FTTITTIIINN
SAddddgorrrrrrFPTITITIXINN
SAdddoTororrrrrrrrrI™2Tr2rNN
% I e glie plte l ol all ol ol ool ol ol ol O AR NI NN NN

P n
< »

Vary z;

=

8

A s

N

= N

ru\\

ATwMH N

ﬂ/

c

2 N

N B

> 3

a

m =<
(@]

%2 =
mz
5 3
© D
S &
(]
()

Vary z,

Sample zfrom 2z ~ N (0, 1)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Datal!

Diagonal prioron z JTJ\ S e
=> independent Degree of smile ‘“ﬁqq::

latent variables \
Different dimensions
of zencode Vary z;

interpretable factors
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

lad A 4
Diagonal prior on z P J,’J‘ Y4y e
=>independent Degree of smile 1“‘“"—‘1q=;.

. EEEERERRRE

latent variables

HEH R

Different dimensions \

of zencode Vary z
interpretable factors
of variation

\

Also good feature representation that
can be computed using g4 (z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Labeled Faces in the Wild
32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with
permission.
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Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal

Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.
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Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density AELEY CE
Fully Visible Belief Nets / \ GSN
- NADE —* :
_ MADE Variational Markov Chain

- PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fei-Fei Li, Ehsan Adeli Lecture13- 90 May 16, 2024



Generative Adversarial
Networks (GANS)
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So far...
PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

po(z) = | | po(@ile1, .., mi-1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead
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So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

po(z) = | | po(@ile1, .., mi-1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?
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So far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

po(z) = | | po(@ile1, .., mi-1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z)2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: not modeling any explicit density function!
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to
do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn
transformation to training distribution.
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to
do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn

transformation to training distribution.

i

Generator
Network

A

Output: Sample from
training distribution

Input: Random noise z
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to
do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn
transformation to training distribution.

But we don’t know which Output: Sample from
sample zmaps to which training distribution
training image -> can’t

learn by reconstructing 1

training images Generator
Network

A

Input: Random noise z
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to
do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn
transformation to training distribution.

But we don’t know which Output: Sample from
sample zmaps to which training distribution
training image -> can’t

learn by reconstructing 1
training images Generator
Network

A

Objective: generated
images should look “real”

Input: Random noise z
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lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to
do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise. Learn
transformation to training distribution.

But we don’t know which Output: Sample from Discriminator Real?
sample z maps to which training distribution Vet F:Ee.?
training image -> can’t '
learn by reconstructing T .

training images Generator gradlent

Solution: Use a discriminator Network v

A

network to tell whether the
generate image is within data Input: Random noise z

distribution (“real”) or not
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

!

Discriminator Network

Fake Images ~ | Real Images
(from generator) | | < (from training set)
T -

Generator Network

A

Random noise yA

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake S o
T \ Discriminator learning signal

Generator learning signal Discriminator Network

Fake Images ~ | Real Images
(from generator) | | < (from training set)
T -

Gevnerator Network

A

Random noise yA

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Tra i n i n g GAN S: TWO- p [aye r ga m e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game
Minimax objective function:

min 0 [Exp,.,, 108 Do, (2) + Exrpte) oB(1 — Do, (G, (2))
g d

Gener/a:or Di '\ inat
objective iscriminator

objective

Fei-Fei Li, Ehsan Adeli
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Tra i n i n g GAN S: TWO- p [aye r ga m e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min e [Errpq. 108 Doy (2) + Exn(o) 08(1 — Do, (Go, ()
0y 0 — ' '

|
Discriminator output Discriminator output for
for real data x generated fake data G(z)

1

Fei-Fei Li, Ehsan Adeli
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Tra i n i n g GAN S: TWO- p [aye r ga m e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min e [Errpq. 108 Doy (2) + Exn(o) 08(1 — Do, (Go, ()
0y 0 — ' '

|
Discriminator output Discriminator output for
for real data x generated fake data G(z)

1

Fei-Fei Li, Ehsan Adeli
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Tra i n i n g GAN S: TWO- p [aye r ga m e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min e [Errpq. 108 Doy (2) + Exn(o) 08(1 — Do, (Go, ()
0,  0a — ' '

|
Discriminator output Discriminator output for
for real data x generated fake data G(z)

1

Fei-Fei Li, Ehsan Adeli
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Training GANs: Two-player game NverearialNeter NS 2008

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Evapdam log Do, (2) + Enp(z) log(1 — Da, (Go, (z)))]
0y 0a — ' '

|
Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (84) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is
close to 0 (fake)

- Generator (65) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is
fooled into thinking generated G(z) is real)
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max []Emdiata log Dy, () + Eznp(z) log(1 — Do, (G, (z)))}

0, 6a

Alternate between:
1. Gradient ascent on discriminator

H(lgg,x [Emfvpdata log Dy, (SL‘) + IE:zwp(z) log(l — Dg, (GBQ (z)))]

2. Gradient descent on generator
n;in ]Ez,\,p(z) log(l — D@d (Ggg (Z)))
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max []Emdiata log Dy, () + Eznp(z) log(1 — Do, (G, (z)))}

0, 6a

Alternate between:
1. Gradient ascent on discriminator

H(lgg,x [Emfvpdata log Dy, (SL‘) + IE:zwp(z) log(l — Dg, (GBQ (z)))]

2. Gradient descent on generator

When sample is likely

n;m ]Ezrvp(z) log(1 — Dy, (Ge (2))) fake, want to learn from
it to improve generator

(move to the right on X

— log(1 - D(G(2))) |

In practice, optimizing this generator objective

) . -1} 1

axis).
does not work well! ) \
: f ' f _
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max []Emdiata log Dy, () + Eznp(z) log(1 — Do, (G, (z)))}

0, 6a

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

HtlgaX [Emwpdaw log Dy, () + E,p(2) log(1 — D, (GOQ (Z)))] dominated by region
¢ where sample is

2. Gradient descent on generator already good
When sample is likely - ‘ —\

n;m ]EZNp(z) log(1 — Dy, (Ge (2))) fake, want to learn from
it to improve generator

In practice, optimizing this generator objective (mpve to the right on X 2 :
axis). A

does not work well! ]
But gradient in this -] : : : : _

region is relatively flat!

4
3
2+
1
0

Fei-Fei Li, Ehsan Adeli Lecture 13- 110 May 16,2024



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max []Emdiata log Dy, () + Eznp(z) log(1 — Do, (G, (z)))}

0, 6a

Alternate between:
1. Gradient ascent on discriminator

H(lgg,x [Emfvpdata log Dy, (SL‘) + IE:zwp(z) log(l — Dg, (GBQ (z)))]

2. Instead: Gradient ascent on generator, different objective
max E,~p(z) log(Dg,(Go,(2))) A
’ /
Instead of minimizing likelihood of discriminator being correct, now High gradiént signal
maximize likelihood of discriminator being wrong. I
Same objective of fooling discriminator, but now higher gradient signal j .

for bad samples => works much better! Standard in practice. Lowgradient signal
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z(V), ..., 2™} from noise prior py(2).
e Sample minibatch of m examples {z(V),...,2(™} from data generating distribution
pdata(m)-
e Update the discriminator by ascending its stochastic gradient:
1 & . .
Voum 2 [10g D, (2?) +log(1 — Dy, (Go, (")) ]
end for
e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p,(z).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— :
Vo, Zl log(D, (G, (2")))

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do

tor[:steps o
e Sample minibatch of m noise samples {z(V), ..., 2™} from noise prior py(2).
Some find k=1 more e Sample minibatch of m examples {z(V),...,2(™} from data generating distribution
stable, othersuse k  Pea(®)-
) e Update the discriminator by ascending its stochastic gradient:
>1, no best rule. L ' '
Vou— > | 10g Do, () + log(1 — Do, (Go, ()))]
Followup work (e.g. i=1
Wasserstein QAN, ST
BEGAN) alleviates ¢ Sample minibatch of m noise samples {z(1), ..., (™} from noise prior py(2).

this problem, better e Update the generator by ascending its stochastic gradient (improved objective):
stability! 1™ ’
Vo, ; log(Da, (Go, (1))

end for
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

!

Discriminator Network

—
Fake Images ~
(from generator) | | \ -
! ‘

Generator Network

Random noise

A

z

Real Images
from training set)

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li, Ehsan Adeli
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples (CIFAR-10)

_——

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
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Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.

e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL.U activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Convolutional Architectures

Interpolating |
between

random =
pointsin laten’ .?"

Radford et al,
ICLR 2016
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutralwoman  Neutral man

Samples
from the <
model
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutralwoman  Neutral man

Samples
from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutralwoman  Neutral man

Samples Smiling Man

from the <
model

Average Z
vectors, do
arithmetic
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Generative Adversarial Nets: Interpretable Vector Math

Radford et al,
Glasses man No glasses man No glasses woman LR 201

Woman with glasses
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. 1 See also: https://github.com/soumith/ganhacks for tips and
2017’ EXplOSIOn Of GANS tricks for trainings GANs
“The GAN Zoo”

¢ GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

* acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

¢ AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

: . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
* AffGAN - Amortised MAP Inference for Image Super-resolution g

B ] 8 DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
¢ AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
e ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
« AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs CAWWN;-LeamingWhatiand WherejtolDraw
s . s GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

¢ b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks L ; e = i &

" . . . Geometric GAN - Geometric GAN
+ Bayesian GAN - Deep and Hierarchical Implicit Models GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning IAN - Neural Photo Editing with Introspective Adversarial Networks

« BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. . . . . . . . « ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters s 9 g

g . 5 * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks .

. : : 5 =u " . InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
¢ CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

¢ CoGAN - Coupled Generative Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo
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https://github.com/soumith/ganhacks

2017: Explosion of GANs

Better training and generation

LSGAN, Zhu 2017. Wasserstein GAN, Arjovsky
2017.
Improved Wasserstein GAN,
Gulrajani 2017.

Progressive GAN, Karras 2018.
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2017: Explosion of GANs

Source->Target domain transfer

Input Output Input Output

“ h - winter Yosemite
CycleGAN. Zhu et al. 2017.

Fei-Fei Li, Ehsan Adeli

Text -> Image Synthesis

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

5T Rin 9 !,
Reed et al. 2017.
Many GAN applications

Pix2pix. Isola 2017. Many exmples at
https://phillipi.github.io/pix2pix/

Lecture13- 126 May 16,2024



2019: BigGAN

Brock et al., 2019
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Summary: GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player game

Pros:
- Beautiful samples!

Cons:
- Trickier / more unstable to train
- Can’tsolve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANs for all kinds of applications
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Summary

Autoregressive models: Variational Autoencoders Generative Adversarial
PixelRNN, PixelCNN Networks (GANSs)
u | i | Real or Fake
: . Sample x|z from |z ~ N (fiz)5, Xz|2) *
f i Discriminator Network
(AN L HMale [ Bgp |
, o Decoder network
iz 353
/
sample zfrom z|@ ~ N (37, X2)z) Real Images
Generator Network
i
Encoder network ‘
qs(2|z) z
Input Data ‘ T ‘
Van der Oord et al, “Conditional . . . Goodfellow et al, “Generative
image generation with pixelCNN Kingma and Welling, “Auto-encoding Adversarial Nets”, NIPS 2014
decoders”, NIPS 2016 variational bayes”, ICLR 2013
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Taxonomy of Generative Models Direct

GAN

Generative models

/\

Explicitaensity

Implicit density

/\

\

Tractable density

Approximate density

Markon Chain

Fully Visible Belief Nets

/ \ GSN

- NADE
- MADE

Variational

- PixelRNN/CNN
- NICE /RealNVP
- Glow
- Ffjord

Variational Autoencoder

Markov Chain

Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fei-Fei Li, Ehsan Adeli

Lecture13- 132 May 16,2024



Taxonomy of Generative Models Direct
GAN

Generative models

/\

Explicitaensity Implicit density

T [ —

Tractable density Approximate density MELEY Gl

Fully Visible Belief Nets / \ \GSN

- NADE S
- MADE Variational Diffusion Markov Chain

- PixelRNN/CNN ~ ——
- NICE /RealNVP Variational Autoencoder piffusion Models

- Glow (LDM, SD, DPM, etc.)
- Ffjord

Boltzmann Machine

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

&
<

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015 Ho et
al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

slide from https://cvpr2022-tutorial-diffusion-models.github.io/
Courtesy of Ruigi Gao
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https://cvpr2022-tutorial-diffusion-models.github.io/

2022 /2023 : The year of diffusion and generative

modeling?
4 ¥ ‘ i

aaaaaaaaaaa

D) F 92 Stable Diffusion

Slide courtesy of Ruiqi Gao
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Generative vs. Self-supervised Learning

o )
ON 'E, DOLLAR
In God
@— we fruty ﬂ

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made
with a dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn

high-level semantic features with pretext tasks instead (self-supervised

learning)
Source: Anand, 2020
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https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

Useful Resources on Generative Models

CS 236: Deep Generative Models (Stanford)

CS 294-158 Deep Unsupervised Learning (Berkeley)
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https://deepgenerativemodels.github.io/
https://sites.google.com/view/berkeley-cs294-158-sp20/home

Next: Vision & Language - OpenAl Sora
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