
Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 20241

Lecture 6 Review:
Review Over Parts 1 + 2



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 2024

Course Logistics

● Assignment 1 is due tomorrow!

● Project proposal deadline is on Monday
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Topic 1: Layers in CNNs
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32

3

3x32x32 image

32

6 activation maps,

each 1x28x28
Don’t forget bias terms! 

Convolution 

Layer

6x3x5x5 

filters Stack activations to get a 

6x28x28 output image!

Recap: Convolution Layer

Slide inspiration: Justin Johnson

4

Activation 

Function!

(ReLU)



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 2024

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

pool with 2x2 filters and 

stride 2

6 8

3 4

5

Recap: Pooling Layer

Max 

Pooling

3.25 5.25

2 2
Average 

Pooling
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Convolution Layers Pooling Layers

x h s

Fully-Connected Layers

Activation Function Normalization

ො𝑥𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇𝑗

𝜎𝑗
2 + 𝜀

Components of CNNs
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Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x,

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D
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Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x,

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 

shift parameters:

Output,

Shape is N x D

Learning     =    ,

=      will recover the 

identity function!
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Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x,

Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 

shift parameters:

Output,

Shape is N x D

(Running) average of 

values seen during training

(Running) average of 

values seen during training

During testing batchnorm 

becomes a linear operator! 

Can be fused with the previous 

fully-connected or conv layer
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Other Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018
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Topic 2: CNN Architectures

11
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 

connections

- 152-layer model for ImageNet

- ILSVRC’15 classification winner 

(3.57% top 5 error)

- Swept all classification and 

detection competitions in 

ILSVRC’15 and COCO’15!

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128 / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool

relu

Residual block

conv

conv

X

identity

F(x) + x

F(x)

relu

X



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 2024

relu

17

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 

desired underlying mapping

Residual block

conv

conv

X

identity
F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 

fit residual

F(x) = H(x) - x 

instead of 

H(x) directly

H(x) = F(x) + x

17

H(x) = F(x) + x

Identity mapping: 

H(x) = x if F(x) = 0 
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Topic 3: Transfer Learning

18
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You don’t always need a lot of a data if you 

want to train/use CNNs!

19
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Transfer Learning with CNNs

AlexNet:

64 x 3 x 11 x 11 

(More on this in Lecture 13)

20
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Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

(More on this in Lecture 13)

21
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Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014

22
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Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014

23



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 2024

Transfer Learning with CNNs

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

1. Train on Imagenet

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 

dataset, train 

more layers

Lower learning rate 

when finetuning; 

1/10 of original LR 

is good starting 

point

Donahue et al, “DeCAF: A Deep Convolutional Activation 

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An 

Astounding Baseline for Recognition”, CVPR Workshops 

2014

24
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Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

More generic

More specific

very similar 

dataset

very different 

dataset

very little data ? ?

quite a lot of 

data

? ?

25
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Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

More generic

More specific

very similar 

dataset

very different 

dataset

very little data Use Linear 

Classifier on

top layer

?

quite a lot of 

data

Finetune a 

few layers

?

26
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Image

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

FC-4096

FC-4096

FC-1000

More generic

More specific

very similar 

dataset

very different 

dataset

very little data Use Linear 

Classifier on 

top layer

You’re in 

trouble… Try 

linear classifier 

from different 

stages

quite a lot of 

data

Finetune a 

few layers

Finetune a 

larger number 

of layers or start 

from scratch!

27
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 

similar data, train a big model there

2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained 

models so you don’t need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

28

https://github.com/tensorflow/models
https://github.com/pytorch/vision
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Topic 4: Activation Functions in 

NNs

29
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Standard Optimization Procedure

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph 

(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

30
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they 

have nice interpretation as a 

saturating “firing rate” of a neuron

Key problem:

Saturated neurons “kill” the 

gradients

31
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]

32
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

33
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Activation Functions

ReLU

(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

- An annoyance:

Dead ReLUs when x < 0!

34
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Activation Functions

Leaky ReLU

- Does not saturate

- Computationally efficient

- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

[Mass et al., 2013]

[He et al., 2015]

35

- Φ(x)
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Activation Functions

GELU

(Gaussian Error 

Linear Unit)

- Computes f(x) = x*Φ(x)

- Very nice behavior around 0

- Smoothness facilitates training in 

practice

- Higher computational cost than ReLU

- Large negative values can still have 

gradient → 0

36

[Hendrycks et al., 2016]

Source: https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg

https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU / PReLU / GELU

- To squeeze out some marginal gains

- Don’t use sigmoid or tanh

37
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Topic 5: Data Preprocessing

38
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TLDR: In practice for Images: center only

- Subtract per-channel mean and

Divide by per-channel std (almost all modern models)

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

39
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Topic 6: Weight Initialization

40
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Weight Initialization: Activation statistics

Forward pass for a 6-layer 

net with hidden size 4096

All activations tend to zero 

for deeper network layers

Q: What do the gradients 

dL/dW look like?

41

𝑑𝐿

𝑑𝑊
= 𝑓′ 𝑎 𝑥 × 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑔𝑟𝑎𝑑

𝑎 =
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Weight Initialization: Activation statistics

Increase std of initial 

weights from 0.01 to 0.05
All activations saturate

Q: What do the gradients 

look like?

42
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Weight Initialization: “Xavier” Initialization

“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

43
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“Just right”: Activations are 

nicely scaled for all layers!

“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

44
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“Just right”: Activations are 

nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 

std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

45
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Weight Initialization: What about ReLU?

Change from tanh to ReLU

46
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Weight Initialization: What about ReLU?

Xavier assumes zero 

centered activation function

Activations collapse to zero 

again, no learning =(

Change from tanh to ReLU

47
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are 

nicely scaled for all layers!

48
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Topic 7: Training vs Testing

49
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How to improve single-model performance?

Regularization
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Regularization: Add term to loss

51

In common use:

L2 regularization

L1 regularization

Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero

Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;

Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 

look

cat 

score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 

models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has

24096 ~ 101233 possible masks!

Only ~ 1082 atoms in the universe...
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Dropout: Test time

At test time all neurons are active always

=> We must scale the activations so that for each neuron:

output at test time = expected output at training time
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Dropout Summary

drop in train time

scale at test time
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More common: “Inverted dropout”

test time is unchanged!
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Regularization: A common pattern

Training: Add some kind of randomness

Testing: Average out randomness (sometimes approximate)
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Regularization: A common pattern

Training: Add some kind 

of randomness

Testing: Average out randomness 

(sometimes approximate)

Example: Batch 

Normalization

Training: 

Normalize using 

stats from random 

minibatches

Testing: Use fixed 

stats to normalize
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Regularization: Data Augmentation

Load image 

and label

“cat”

CNN

Compute

loss

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales:  {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 

contrast and brightness
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Regularization: Cutout
Training: Set random image regions to zero

Testing: Use full image

Examples:
Dropout

Batch Normalization

Data Augmentation

Cutout / Random Crop

DeVries and Taylor, “Improved Regularization of 

Convolutional Neural Networks with Cutout”, arXiv 2017

Works very well for small datasets like CIFAR, 

less common for large datasets like ImageNet
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Topic 8: Hyperparameter Selection

65



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 202466

Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training 

data, turn on small weight decay, find a learning rate that 

makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves (next slides)
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Accuracy

time

Train

Accuracy still going up, you 

need to train longer

Val
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Accuracy

time

Train

Huge train / val gap means 

overfitting! Increase regularization, 

get more data

Val
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Accuracy

time

Train

No gap between train / val means 

underfitting: train longer, can use 

a bigger model

Val
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Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves

Step 7: GOTO step 5



Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 202472

Random Search vs. Grid Search

Important Parameter Important Parameter
U

n
im

p
o

rt
an

t 
P

ar
am

et
er

U
n

im
p

o
rt

an
t 

P
ar

am
et

er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 

Longpre, copyright CS231n 2017

Random Search for Hyper-

Parameter Optimization

Bergstra and Bengio, 2012
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Summary
We reviewed 8 topics at a high level:

1. Layers in CNNs

2. CNN Architectures (ResNets)

3. Transfer Learning (train on ImageNet first)

4. Activation Functions in NNs (ReLU, GELU, etc.)
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Fei-Fei Li, Ehsan Adeli, Zane Durante Lecture 6 - April 18, 2024

Summary
We reviewed 8 topics at a high level:

5.  Data Preprocessing (subtract mean, divide std)

6.  Weight Initialization (Xavier vs Kaiming)

7.  Training vs Testing (Regularization strategies)

8.  Hyperparameter (Checking Losses + Random Search)
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