# Lecture 2:

Image Classification with Linear Classifiers

# Administrative: Assignment 1

#### Will be out Wednesday 4/9, due 4/23 by 11:59 PM

- K-Nearest Neighbor
- Linear classifiers: Softmax
- Two-layer neural network
- Image features
- Deep neural network and optimizers

# Administrative: Course Project

Project proposal due 4/25 (Friday) 11:59 pm

Contact us on Ed, each project team will have a TA assigned to them for future questions

your assigned TA for initial guidance (Canvas -> People -> Groups)

Use the Google Form to find project partners (will be posted later today)

"Is X a valid project for 231n?" --- Ed private post / TA Office Hours

More info on the website

#### Administrative: Discussion Sections

This Friday 12:30 pm-1:20 pm, in person at NVIDIA Auditorium, remote on Zoom (recording will be made available)

Python / Numpy, Google Colab

Presenter: Emily Jin (TA) with Assistance from Matthew Jin (TA)

# Syllabus

| Deep Learning Basics                                                                                                                                                                       | Perceiving and Understanding the Visual World                                                                                                                                                                  | Reconstructing and Interacting with the Visual World                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Data-driven approaches Linear classification K-Nearest Neighbor Loss Functions Optimization Backpropagation Multi-layer Perceptrons Neural Networks Activation Functions Data Augmentation | Transfer Learning Optimizers Convolutions PyTorch RNNs / Attention / Transformers Normalization Layers Architecture Design Video Understanding Vision and Language 3D Vision Object Detection and Segmentation | Style Transfer Generative Models Self-supervised Learning Image Generation Robotics and Embodied AI  Human-centered AI Fairness & Ethics |

# Image Classification

A Core Task in Computer Vision

#### Today:

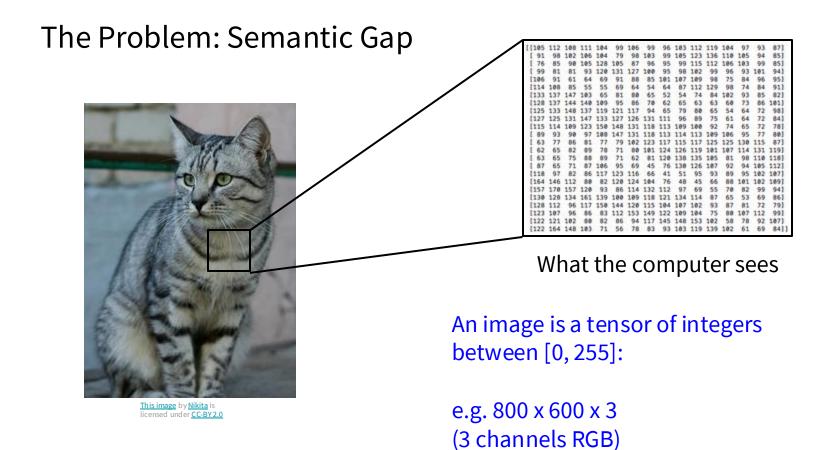
- The image classification task
- Two basic data-driven approaches to image classification
  - K-nearest neighbor and linear classifier

#### Image Classification: A core task in Computer Vision



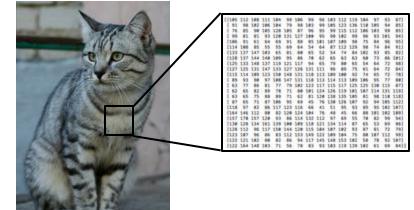
This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}



## Challenges: Viewpoint variation









All pixels change when the camera moves!

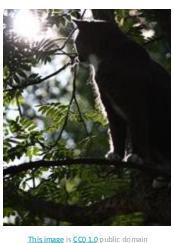
This image by Nikita is licensed under CC-BY 2.0

## Challenges: Illumination









This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

## Challenges: Background Clutter





This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

## Challenges: Occlusion





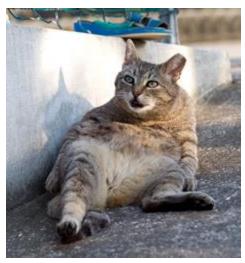


This image is CCO 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

# Challenges: Deformation



This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>



<u>This image</u> by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>



This image by sare bear is licensed under CC-BY 2.0



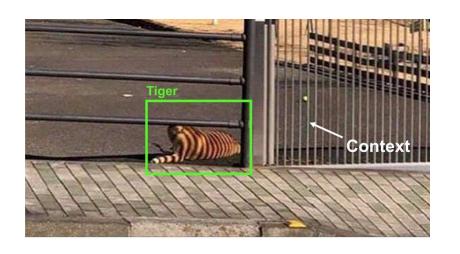
This image by Tom Thai is licensed under CC-BY 2.0

## Challenges: Intraclass variation



This image is CC0 1.0 public domain

#### Challenges: Context





 $Image\ source: https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313\_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm\_source=linkedin\_share\&utm\_medium=member\_desktop\_web$ 

## Modern computer vision algorithms



This image is CC0 1.0 public domain

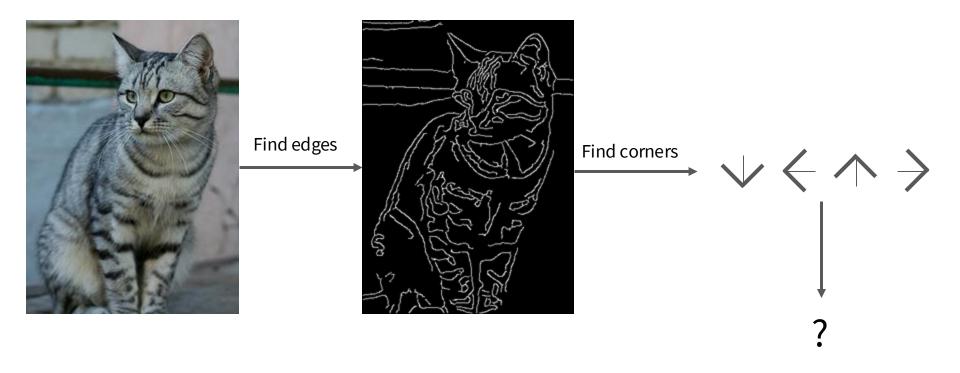
# An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

# Attempts have been made



John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

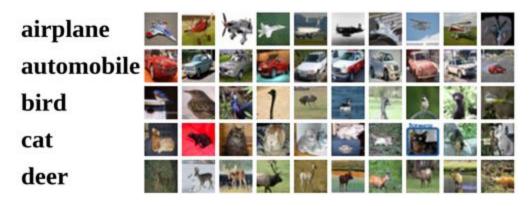
# Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set



# Nearest Neighbor Classifier

# First classifier: Nearest Neighbor

```
def train(images, labels):
                                             Memorize all data
  # Machine learning!
                                             and labels
  return model
def predict(model, test_images):
                                             Predict the label of
  # Use model to predict labels
                                            the most similar
  return test_labels
                                             training image
```

# First classifier: Nearest Neighbor



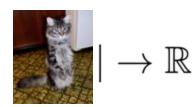
Training data with labels



query data

**Distance Metric** 





# Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

| test image |    |     |     |  |  |
|------------|----|-----|-----|--|--|
| 56         | 32 | 10  | 18  |  |  |
| 90         | 23 | 128 | 133 |  |  |
| 24         | 26 | 178 | 200 |  |  |
| 2          | 0  | 255 | 220 |  |  |

#### training image

| 10 | 20 | 24  | 17  |  |  |
|----|----|-----|-----|--|--|
| 8  | 10 | 89  | 100 |  |  |
| 12 | 16 | 178 | 170 |  |  |
| 4  | 32 | 233 | 112 |  |  |

#### pixel-wise absolute value differences

| = | 46 | 12 | 14 | 1   |    |
|---|----|----|----|-----|----|
|   | 82 | 13 | 39 | 33  | ad |
|   | 12 | 10 | 0  | 30  |    |
|   | 2  | 32 | 22 | 108 |    |
| 3 |    |    |    | _   | Ļ  |

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

#### Nearest Neighbor classifier

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

#### Nearest Neighbor classifier

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
```

```
Nearest Neighbor classifier
```

```
For each test image:
Find closest train image
Predict label of nearest image
```

```
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are fast at prediction; slow for training is ok

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

#### Nearest Neighbor classifier

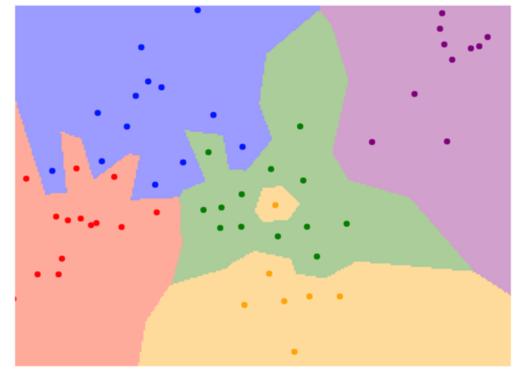
Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

#### A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

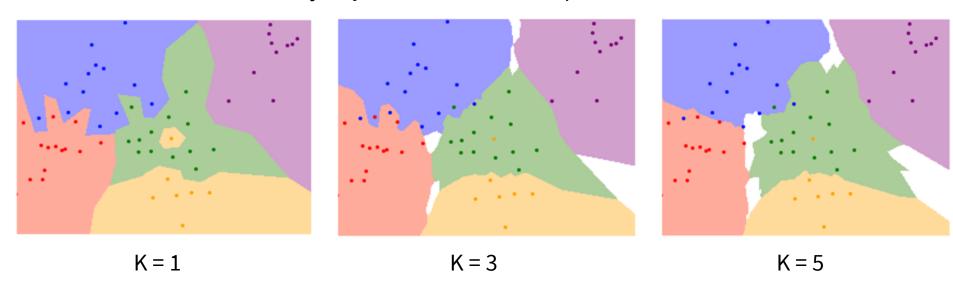
#### What does this look like?



1-nearest neighbor

# K-Nearest Neighbors

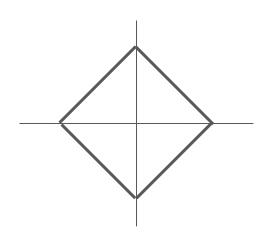
Instead of copying label from nearest neighbor, take majority vote from K closest points



# K-Nearest Neighbors: Distance Metric

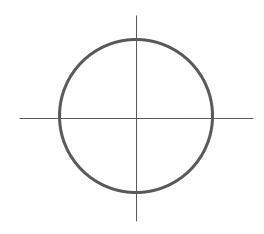
#### L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



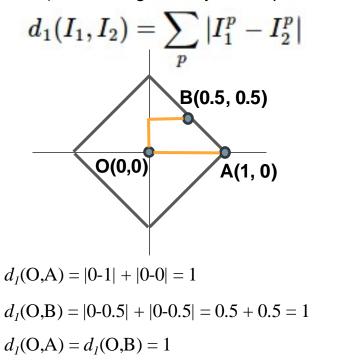
#### L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$



# K-Nearest Neighbors: Distance Metric - Example

**L1 Distance:** Measures distance by moving along grid lines (like walking in a city with square blocks).



**L2 Distance:** Measures the straight-line distance (as the crow flies).

$$d_2(I_1, I_2) = \sqrt{\sum_{p} (I_1^p - I_2^p)^2}$$

$$B(1/\sqrt{2}, 1/\sqrt{2})$$

$$A(1, 0)$$

$$art((0-1)^2 + (0-0)^2) = sart(1^2) = 1$$

 $d_2(O,A) = \operatorname{sqrt}((0-1)^2 + (0-0)^2) = \operatorname{sqrt}(1^2) = 1$ 

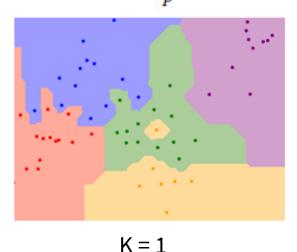
 $d_2(O,B) = \operatorname{sqrt}((0-1/\sqrt{2})^2 + (0-1/\sqrt{2})^2) = \operatorname{sqrt}(1/2+1/2) = \operatorname{sqrt}(1) = 1$ 

 $d_2(O,A) = d_2(O,A) = 1$ 

# K-Nearest Neighbors: Distance Metric

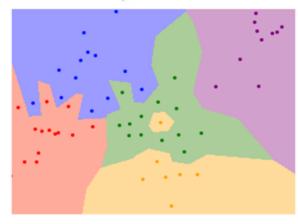
#### L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



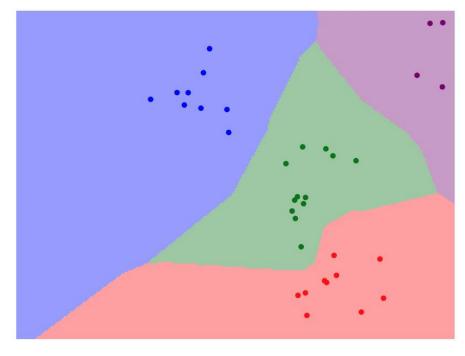
#### L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$



$$K = 1$$

# K-Nearest Neighbors: try it yourself!



http://vision.stanford.edu/teaching/cs231n-demos/knn/

# Hyperparameters

What is the best value of k to use? What is the best distance to use?

These are hyperparameters: choices about the algorithms themselves.

Very problem/dataset-dependent.
Must try them all out and see what works best.

# **Setting Hyperparameters**

Idea #1: Choose hyperparameters that work best on the training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

train

test

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Never do this!

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

Better!

train

validation

test

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
|--------|--------|--------|--------|--------|
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |

test

Useful for small datasets, but not used too frequently in deep learning

#### Example Dataset: CIFAR10

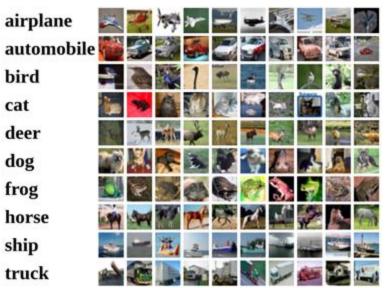
10 classes 50,000 training images 10,000 testing images



 $A lex\ Krizhevsky, "Learning\ Multiple\ Layers\ of\ Features\ from\ Tiny\ I\ mages",\ Technical\ Report,\ 2009.$ 

#### Example Dataset: CIFAR10

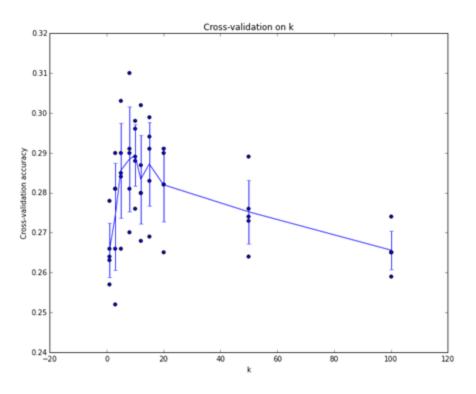
10 classes 50,000 training images 10,000 testing images



Test images and nearest neighbors



 $A lex\ Krizhevsky, "Learning\ Multiple\ Layers\ of\ Features\ from\ Tiny\ I\ mages",\ Technical\ Report,\ 2009.$ 



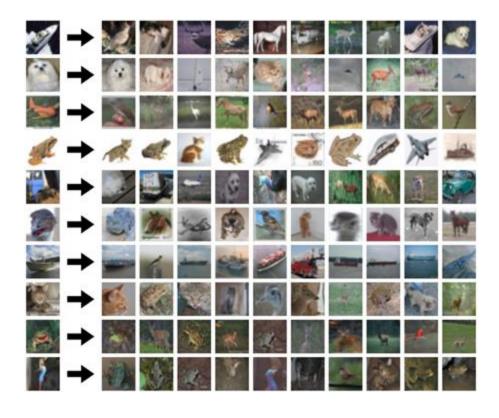
Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

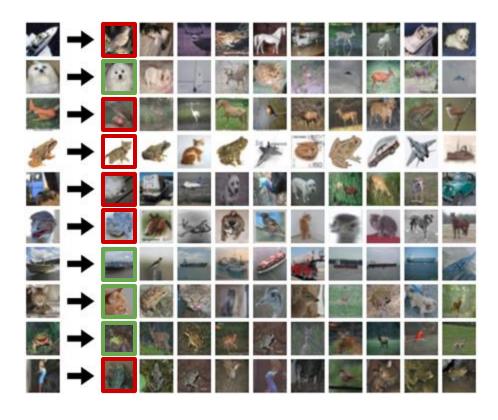
The line goes through the mean, bars indicated standard deviation

(Seems that k ~= 7 works best for this data)

#### What does this look like?



#### What does this look like?



#### k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative



(All three images on the right have the same pixel distances to the one on the left)

# K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on the K nearest training examples

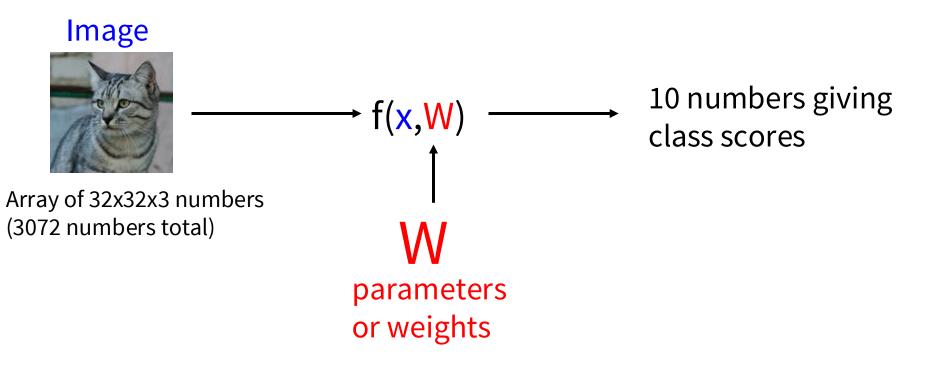
#### Distance metric and K are hyperparameters

Choose hyperparameters using the validation set

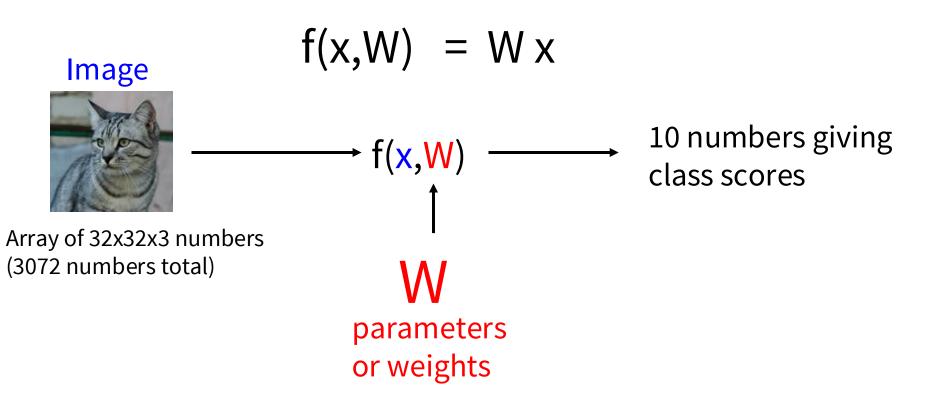
Only run on the test set once at the very end!

# Linear Classifier

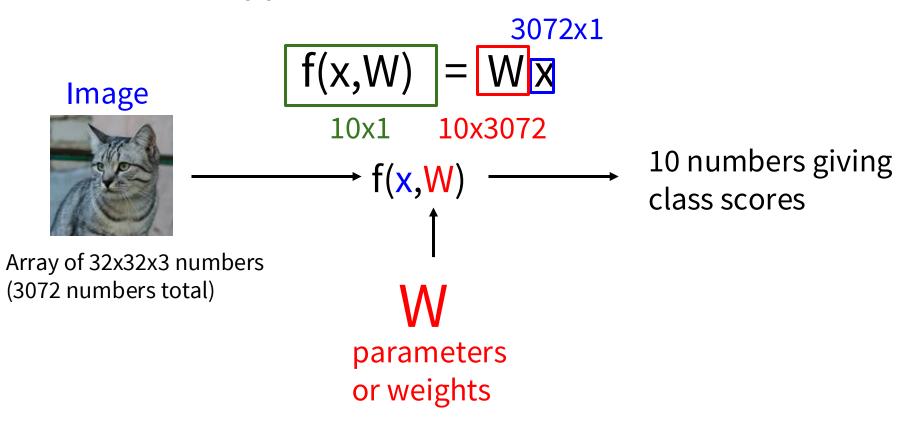
# Parametric Approach



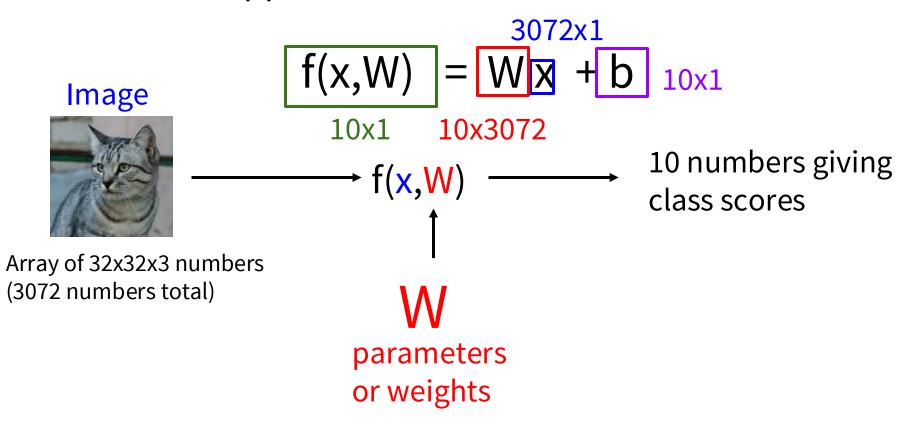
# Parametric Approach: Linear Classifier



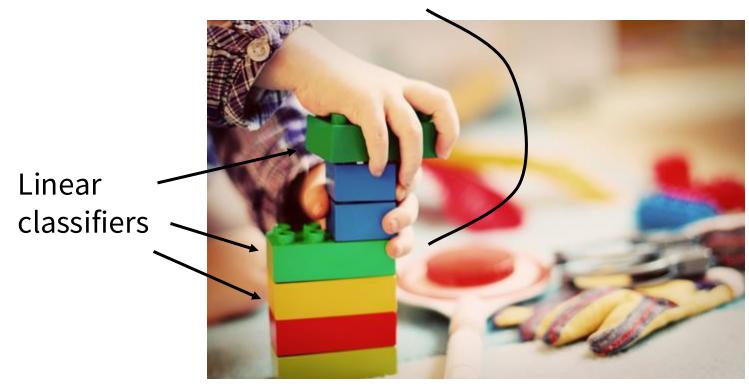
# Parametric Approach: Linear Classifier



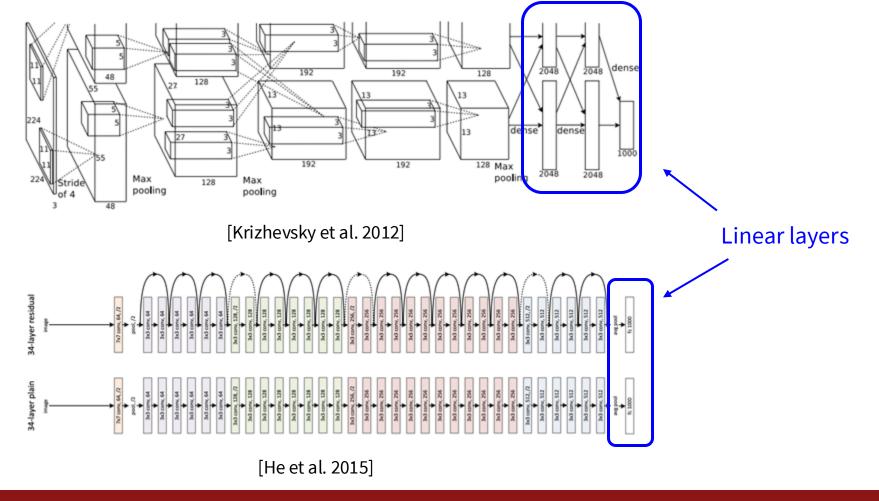
# Parametric Approach: Linear Classifier



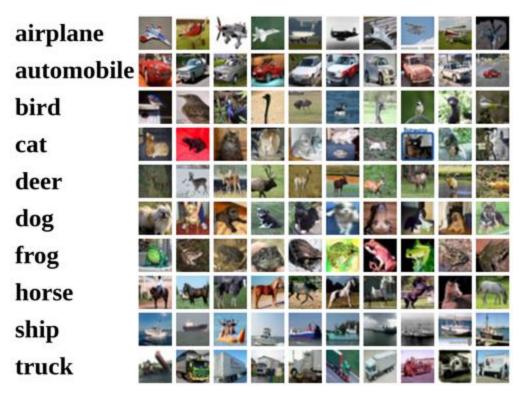
#### Neural Network



This image is CCO 1.0 public domain



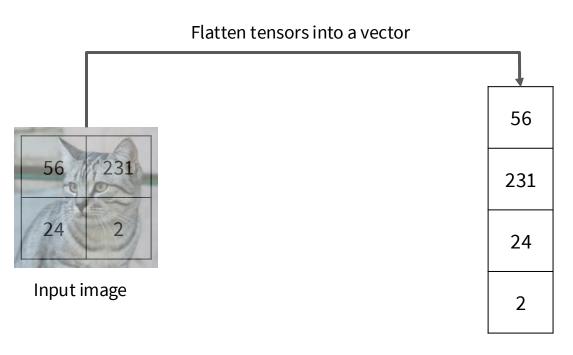
#### Recall CIFAR10



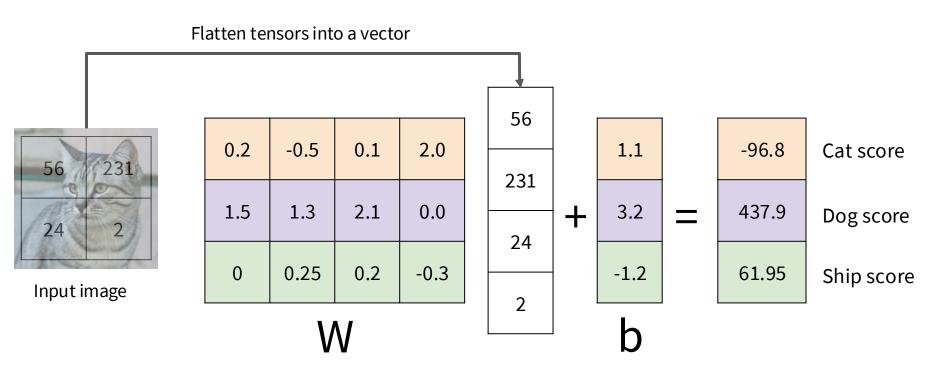
50,000 training images each image is 32x32x3

10,000 test images.

#### Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



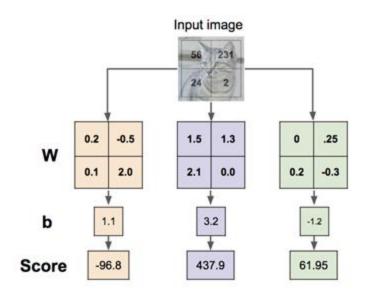
# Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint



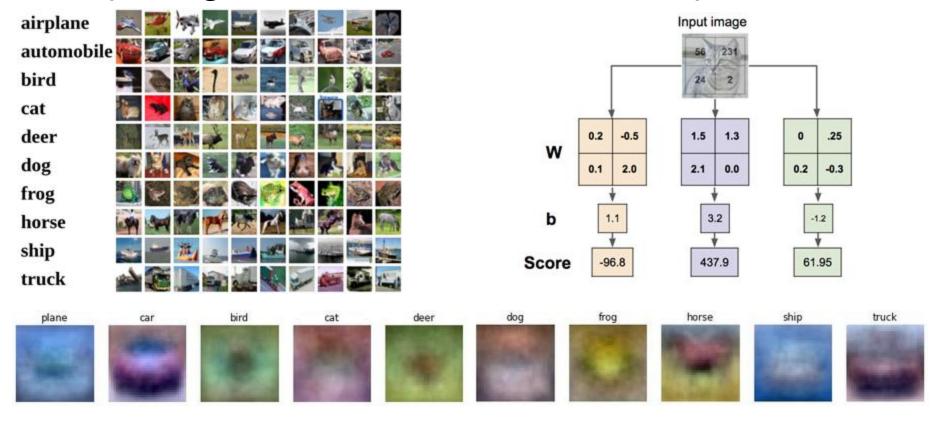
60

# Interpreting a Linear Classifier

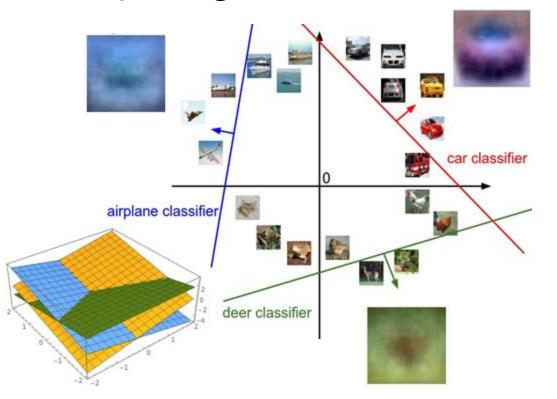




#### Interpreting a Linear Classifier: <u>Visual Viewpoint</u>



#### Interpreting a Linear Classifier: Geometric Viewpoint



$$f(x,W) = Wx + b$$



Array of 32x32x3 numbers (3072 numbers total)

<u>Catimage</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

#### Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

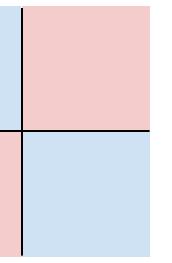
Everything else

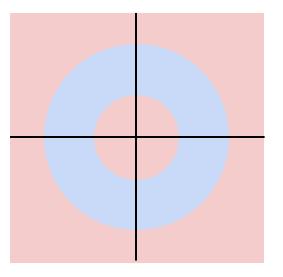
Class 1:

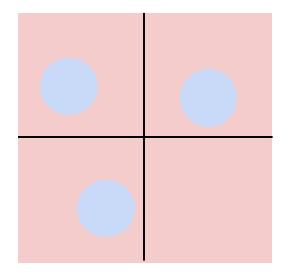
Three modes

Class 2:

Everything else







# Linear Classifier – Choose a good W







| airplane   | -3.45 | -0.51 | 3.42  |
|------------|-------|-------|-------|
| automobile | -8.87 | 6.04  | 4.64  |
| bird       | 0.09  | 5.31  | 2.65  |
| cat        | 2.9   | -4.22 | 5.1   |
| deer       | 4.48  | -4.19 | 2.64  |
| dog        | 8.02  | 3.58  | 5.55  |
| frog       | 3.78  | 4.49  | -4.34 |
| horse      | 1.06  | -4.37 | -1.5  |
| ship       | -0.36 | -2.09 | -4.79 |
| truck      | -0.72 | -2.93 | 6.14  |
|            |       |       |       |

- 1. Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Catimage by Nikita is licensed under CC-BY 2.0; Carimage is CCO 1.0 public domain; Frog image is in the public domain

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx

|   | 1 |      | A | • |
|---|---|------|---|---|
|   |   | TO S |   | £ |
| - | 7 | 1    |   |   |
| 1 |   |      |   | 1 |
|   | 1 | 100  | 1 | 1 |





1.3





A loss function tells how good our current classifier is



Suppose: 3 training examples, 3 classes.







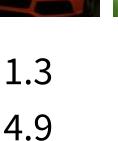
1.3

2.0

2.2

car frog





2.5

-3.1

-1.7

With some W the scores

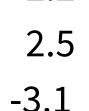
Suppose: 3 training examples, 3 classes.



f(x,W) = Wx



frog



Lecture 2 -68

2.2

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where  $x_i$  is image and  $y_i$  is (integer) label

Suppose: 3 training examples, 3 classes.

With some W the scores

cat

car

frog



f(x,W) = Wx



 $\{(x_i, y_i)\}_{i=1}^N$ Where  $x_i$  is image and  $y_i$  is (integer) label 1.3 2.2 Loss over the dataset is a average

Given a dataset of examples 
$$\{(x_i,y_i)\}_{i=1}^N$$

1.3 2.2 Where  $x_i$  is image and  $y_i$  is (integer) label

4.9 2.5 Loss over the dataset is a average of loss over examples:

2.0 -3.1  $L = \frac{1}{N} \sum_i L_i(f(x_i,W),y_i)$ 

3.2

5.1

-1.7

A loss function tells how good

Given a dataset of examples

our current classifier is

of loss over examples:

Softmax classifier



Want to interpret raw classifier scores as probabilities

cat 3.2

car

5.1

frog -1.7



Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

cat 3.2

car 5.1

frog -1.7

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

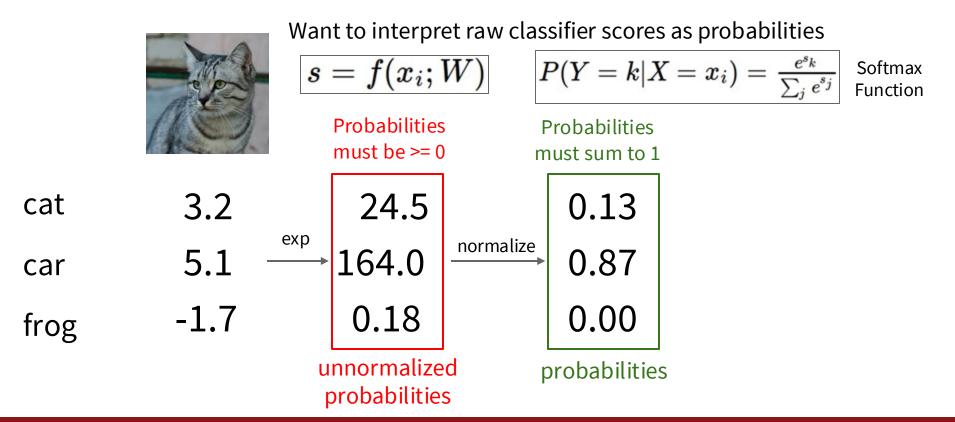
 $P(Y=k|X=x_i) =$ 

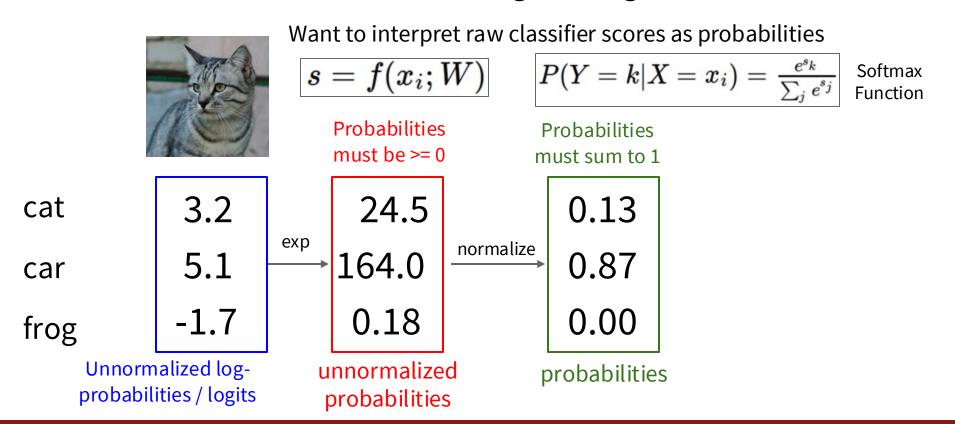
**Probabilities** must be  $\geq 0$ 

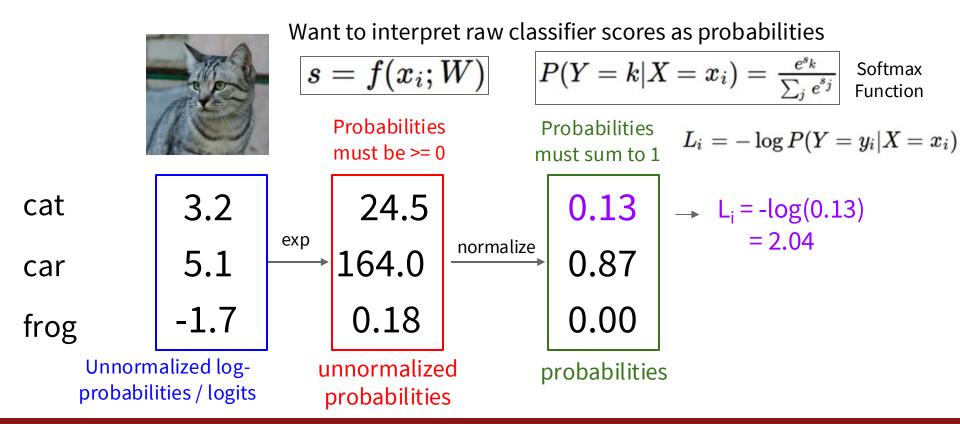
3.2 24.5 cat 5.1 164.0 car -1.70.18frog unnormalized

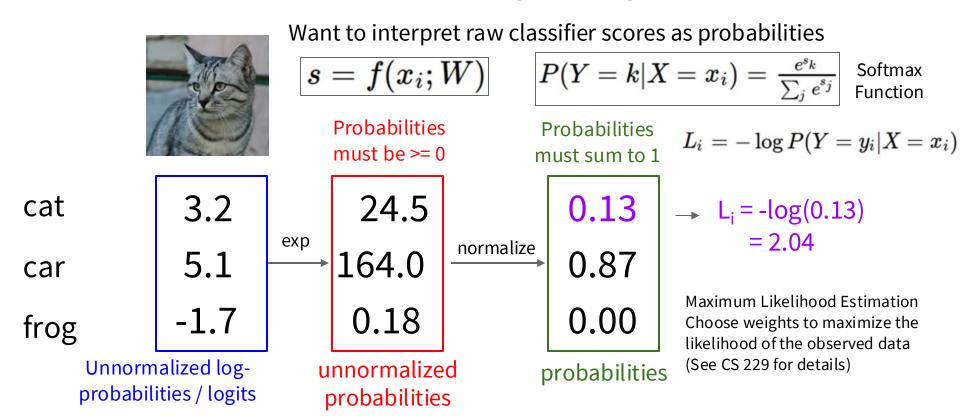
probabilities

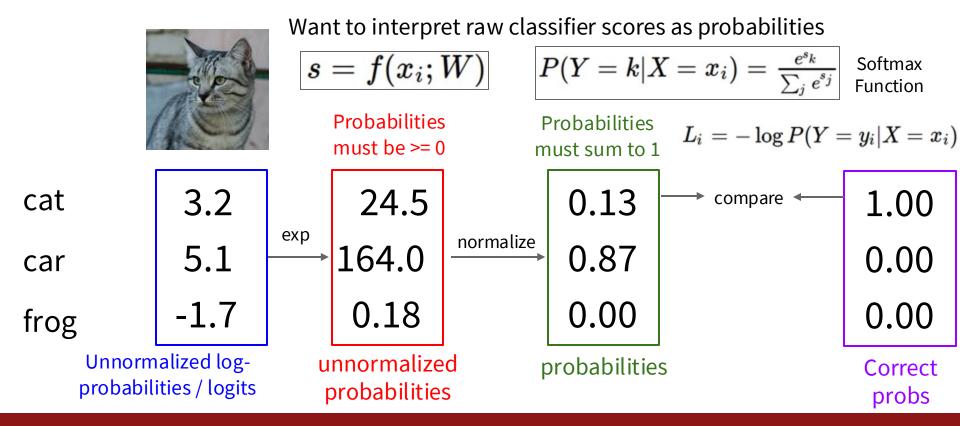
Softmax **Function** 

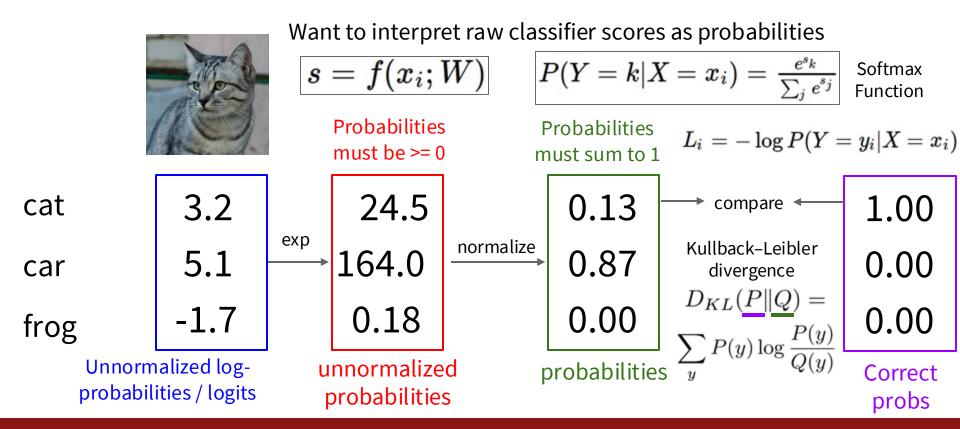


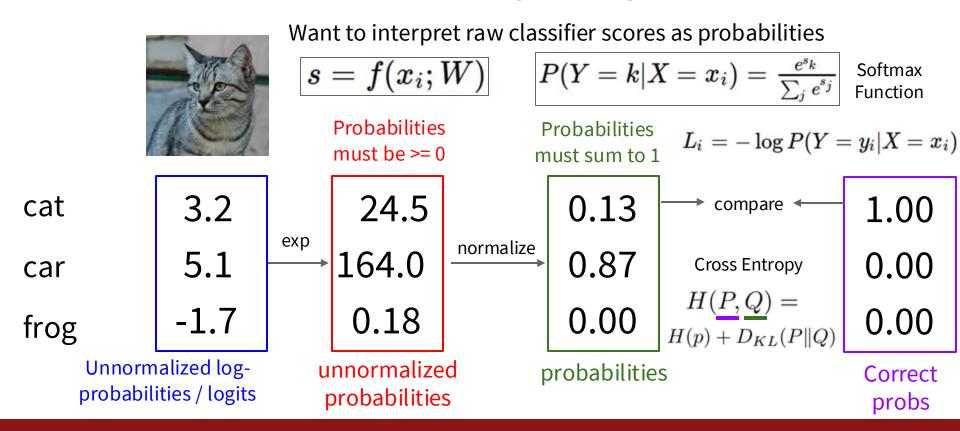














Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

car 5.1

frog -1.7



Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat 3.2

car

5.1

frog -1.7

Q1: What is the min/max possible softmax loss L<sub>i</sub>?

Q2: At initialization all s<sub>j</sub> will be approximately equal; what is the softmax loss L<sub>i</sub>, assuming C classes?



Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat 3.2

car 5.1

frog -1.7

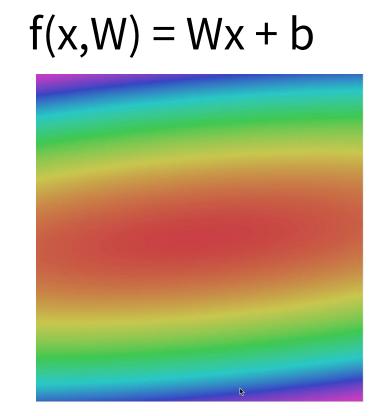
Q2: At initialization all s will be approximately equal; what is the loss?

 $A: -\log(1/C) = \log(C),$ 

If C = 10, then  $L_i = log(10) \approx 2.3$ 

# Coming up:

- Regularization
- Optimization



Reading Assignment – SVM Loss

With some W the scores f(x, W) = Wx







#### Multiclass SVM loss:

Given an example  $(x_i, y_i)$ where  $\,x_i\,$  s the image and where  $y_i$  s the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

the SVM loss has the form: 3.2 1.3 2.2 cat

 $L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1\\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$ 2.5 4.9 5.1 car -1.7

 $= \sum \max(0, s_j - s_{y_i} + 1)$ -3.1 2.0

frog

With some W the scores f(x, W) = Wx

$$f(x,W) = Wx$$







cat

frog

3.2

1.3

4.9

2.2 2.5

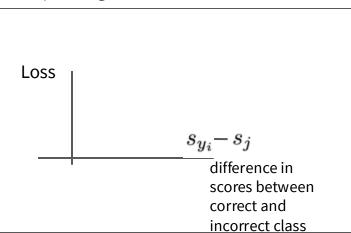
5.1 car

-1.7

2.0

-3.1

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W) = Wx$$







cat

car

frog

3.2

5.1

-1.7

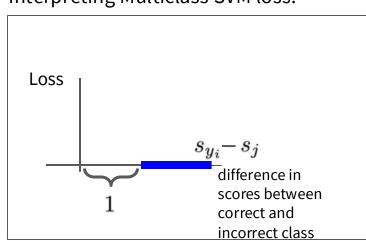
1.3

2.2 2.5

4.9

-3.1 2.0

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W) = Wx$$







cat

car

3.2 5.1

1.3 4.9

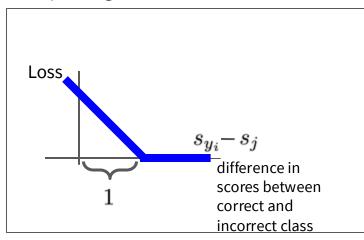
2.2 2.5

-1.7frog

2.0

-3.1

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W) = Wx







3.2 cat

1.3

2.2

5.1 car

frog

4.9 -1.7

2.5 -3.12.0

Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx







Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $\,x_i\,$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

cat

car

3.2 5.1

-1.7

frog 2.9 Losses:

1.3 2.2

4.9 2.5

2.0 -3.1 the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$  $+\max(0, -1.7 - 3.2 + 1)$  $= \max(0, 2.9) + \max(0, -3.9)$ 

= 2.9 + 0

= 2.9

With some W the scores f(x, W) = Wx







Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

cat

1.3

2.2

the SVM loss has the form:

 $= \max(0, 1.3 - 4.9 + 1)$ 

3.2 5.1 car -1.7frog

Losses:

4.9

2.5

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

2.0

-3.1

 $+\max(0, 2.0 - 4.9 + 1)$  $= \max(0, -2.6) + \max(0, -1.9)$ 

2.9

= 0 + 0

= 0

Stanford CS231n 10<sup>th</sup> Anniversary

Lecture 2 -92

April 3, 2025

With some W the scores f(x, W) = Wx



5.1





Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $\,x_i\,$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

3.2 cat

1.3

2.2

-3.1

2.5

the SVM loss has the form:

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $= \max(0, 2.2 - (-3.1) + 1)$ 

 $+\max(0, 2.5 - (-3.1) + 1)$  $= \max(0, 6.3) + \max(0, 6.6)$ 

= 6.3 + 6.6= 12.9

-1.7frog Losses:

car

2.9

4.9

2.0

3.2

cat

car

frog

Losses:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx





the SVM loss has the form: 1.3 2.2  $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

2.5

-3.1

12.9

 $L = \frac{1}{N} \sum_{i=1}^{N} L_i$ L = (2.9 + 0 + 12.9)/3

vector:

Multiclass SVM loss:

where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Given an example  $(x_i, y_i)$ 

and using the shorthand for the scores

Loss over full dataset is average:

 $s = f(x_i, W)$ 

cat

car

frog

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx

1.3 4.9

2.0

SVM loss L<sub>i</sub>?

training example?

Multiclass SVM loss:

Q1: What happens to loss if car

scores decrease by 0.5 for this

Q2: what is the min/max possible

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

Q3: At initialization W is small so all  $s \approx 0$ . What is the loss L<sub>i</sub>, assuming N

With some W the scores



f(x, W) = Wx



Lecture 2 -96

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Multiclass SVM loss:

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

cat

car

frog

Losses:

1.3

2.2

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

3.2 5.1

-1.7

Suppose: 3 training examples, 3 classes.

4.9

2.0

2.5

-3.1

12.9

Q4: What if the sum

2.9

was over all classes? (including j = y\_i)

With some W the scores

Suppose: 3 training examples, 3 classes.



f(x,W) = Wx



1.3

2.2

3.2 5.1 car -1.7frog

2.9

cat

Losses:

4.9

2.0

2.5 -3.1

> 12.9 Lecture 2 -97

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

the SVM loss has the form:

Multiclass SVM loss:

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

Q5: What if we used mean instead of sum?

cat

car

frog





Given an example  $(x_i, y_i)$ where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Multiclass SVM loss:

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx

Lecture 2 -98

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

3.2

5.1

-1.7

1.3

2.0

2.2

4.9

2.5

-3.112.9

2.9 Losses:

With some W the scores f(x,W) = Wx







3.2

1.3

2.2

12.9

5.1 car

4.9

2.5

-1.7 frog

Losses:

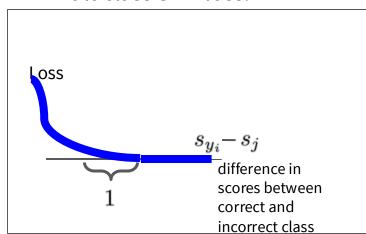
2.0

-3.1

Stanford CS231n 10<sup>th</sup> Anniversary

2.9

Multiclass SVM loss:

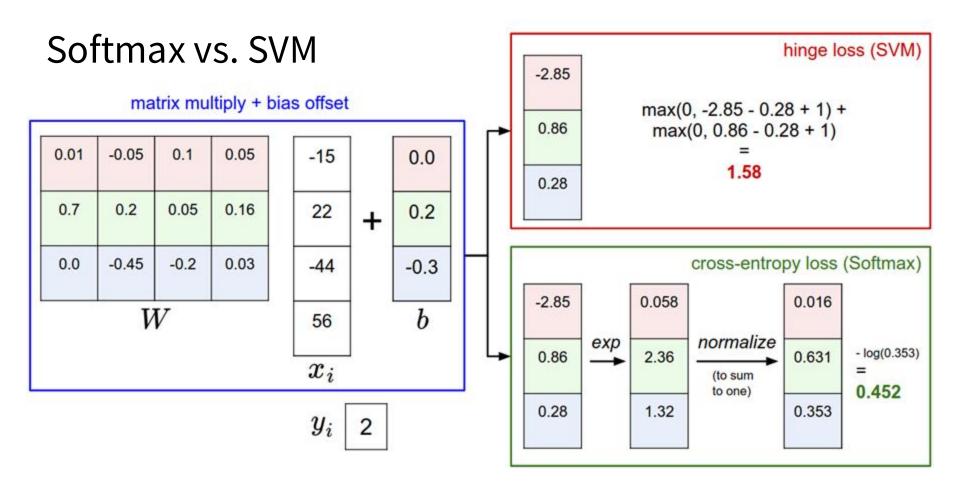


Q6: What if we used

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

### Multiclass SVM Loss: Example code

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$



## Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_{i}e^{s_j}})$$
  $L_i = \sum_{j}$ 

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$ 

assume scores:

[10, -100, -100]

[10, -2, 3]

[10, 9, 9]

Softmax vs. SVM

SVM loss?

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

Q: What is the softmax loss and the

and

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$ 

assume scores:

[20, -2, 3]

[20, 9, 9]

and

Softmax vs. SVM

Q: What is the softmax loss and the SVM loss if I double the correct class score from 10 -> 20?

Stanford CS231n 10<sup>th</sup> Anniversary

April 3, 2025

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$