Lecture 2:
Image Classification with Linear Classifiers
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Administrative: Assignment 1

Will be out Wednesday 4/9, due 4/23 by 11:59 PM
- K-Nearest Neighbor

- Linear classifiers: Softmax

- Two-layer neural network

- Image features

- Deep neural network and optimizers

Stanford CS231n 10t Anniversary Lecture2- 2 April 3,2025



Administrative: Course Project

Project proposal due 4/25 (Friday) 11:59 pm

Contact us on Ed, each project team will have a TA assigned to them for future
questions

your assigned TA for initial guidance (Canvas -> People -> Groups)
Use the Google Form to find project partners (will be posted later today)
“Is X a valid project for 231n?” --- Ed private post / TA Office Hours

More info on the website
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Administrative: Discussion Sections

This Friday 12:30 pm-1:20 pm, in person at NVIDIA Auditorium, remote on Zoom
(recording will be made available)

Python / Numpy, Google Colab

Presenter: Emily Jin (TA) with Assistance from Matthew Jin (TA)
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Syllabus

Perceiving and Understanding Reconstructing and Interacting
Deep Learning Basics the Visual World with the Visual World .
Data-driven approaches Transfer Learning Style Transfer
Linear classification Optimizers Generative Models
K-Nearest Neighbor Convolutions Self-supervised Learning
Loss Functions PyTorch Image Generation
Optimization RNNs / Attention / Transformers Robotics and Embodied Al
Backpropagation Normalization Layers
Multi-layer Perceptrons Architecture Design
Neural Networks Video Understanding
Activation Functions Vision and Language Human-centered Al
Data Augmentation 3D Vision Fairness & Ethics

Object Detection and Segmentation
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Image Classification

A Core Task in Computer Vision

Today:
e Theimage classification task
e Two basic data-driven approaches to image classification
o K-nearest neighbor and linear classifier
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Image Classification: A core task in Computer Vision

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

v

cat

Ibmmag&b
sed unde CCBYZO

Stanford CS231n 10t Anniversary Lecture2- 7 April 3, 2025


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

The Problem: Semantic Gap
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What the computer sees

Animage is a tensor of integers
between [0, 255]:

e Ry 0 e.g. 800 x600 x 3
(3 channels RGB)
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Viewpoint variation

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Challenges: Illumination

This image is CC0 1.0 Thisimage is CC0 1.0
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https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Background Clutter

Thisim is.CCO 1.0 public domain This im: is.CC0 1.0 public domain
Ihisimage JIhis image
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https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Occlusion

This image byjonsson is licensed

This image is CC0 1.0 public domain This image is CC0 1.0 public domain under CCBY2.0
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https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Deformation

Thisimage by Umberto Salvagnin is This image by Umberto Salvagnin is This image by sare bear is Thisimage byTom Thai s licensed
licensed under CC-BY 2.0 licensed under CC-BY 2.0 licensed under CC-BY 2.0 under CC-BY2.0
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https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/

Challenges: Intraclass variation

This image is.CC0 1.0 public domain

Stanford CS231n 10t Anniversary Lecture2- 14 April 3, 2025


http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Challenges: Context

Image source: https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-
6912446088364875776-h-Iq?utm_source=linkedin_share&utm_medium=member_desktop_web
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Modern computer vision algorithms
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This image is.CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

An image classifier

def classify_image(image):
# Some magic here?
return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.
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Attempts have been made

Find corners
-\ N D
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Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels): airplane
# Machine learning!
return model automoblle.
bird
def predict(model, test_images): cat

# Use model to predict labels

return test_labels deer
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Nearest Neighbor Classifier
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First classifier: Nearest Neighbor

def train(images, labels): Memorize all data
# Machine learning! > d label
return model and labeis

def predict(model, test_images): Predict the label of

# Use model to predict labels
return test labels

A 4

the most similar
training image
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First classifier: Nearest Neighbor

deer bird plane cat car

&
[~

Training data with labels

query data

Distance Metric

| - R
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Distance Metric to compare images

L1 distance: di(I, L) =Y |If -
P

test image training image pixel-wise absolute value differences
56 | 32 | 10 | 18 10 | 20 | 24 | 17 46 | 12 | 14 | 1
90 | 23 [ 128|133 8 | 10 | 89 (100 82113 |39 | 33 i

a
- — —> 456

24 | 26 | 178|200 12 | 16 (178 | 170 12 (10 0 | 30
2 0 | 255|220 4 | 32 (233|112 2 | 32| 22 | 108
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import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def _ init_ ( ):
pass

def train( A B
tum X is N x D where each row is an example. Y is l-dimension of size N ""

fXtr = X
ytr=y

def predict( 2,9
*#" X is N x D where each row is an example we wish to predict label for """

num test = X.shape[©]

Ypred = np.zeros(num test, dtype = .ytr.dtype)
for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) { ‘
Ypred[i] = self.ytr[min_index] #

return Ypred
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import numpy as np . . pe
Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ ( ):

pass
def train( Xy . . .
""" X is N x D where each row is an example. Y is 1-dimension of size N """ Memonze tralnlng data
f.Xtr = X
ytr=y
def predict( , X):

""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[€]

Ypred = np.zeros(num test, dtype = f.ytr.dtype)
for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[i,:]), axis = 1)
min index = np.argmin(distances) ¢ ‘
Ypred[i] = self.ytr[min_index] #

return Ypred
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import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def _ init_ ( ):
pass

def train( A B
"um X is N x D where each row is an example. Y is l-dimension of size N ""

f.Xtr = X
ytr=y
def predict( 2,9
“w® X is N x D where each row is an example we wish to predict label for """

num test = X.shape[©]

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test): For eaCh test image:
i . . Find closest train image
distances = np.sum(np.abs( Xtr - X[1i,:]), axis = 1) . .
St e b S ) Predict label of nearest image
Ypred[i] = self.ytr[min_index] # t F rest e

return Ypred
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import numpy as np . . pe
Nearest Neighbor classifier
class NearestNeighbor:
def _ init_ ( ):

B . Q: With N examples, how
defﬂf":“l‘i N x'DX\;hz:; each row is an example. Y is l-dimension of size N """ faSt aretraining and
i s ‘ prediction?
ytr=y
def predict(scli, X): ) Ans: Train O(l),
num_:e;i 2 ;‘zh:;:[gleach row is an example we wish to predict label for F)rff(ji(:t ()(Pq)
Ypred = nb.zeros(num*test, dtypé = .Qtr.dtype) 2

. o This is bad: we want

for i in xrange(num_test): classifiers that are fast at
| ' ol | prediction; slow for
training is ok

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min_index = np.argmin(distances) '

Ypred[i] = f.ytrimin_index] #

return Ypred
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import numpy as np

Nearest Neighbor classifier

class NearestNeighbor:
def __init_ ( ):
pass

Many methods exist for fast /
approximate nearest

neighbor (beyond the scope

def train( A B
tum X is N x D where each row is an example. Y is l-dimension of size N "

Xtr = X

ytr =y of 231N!)
def predict( 2,9
“w® X is N x D where each row is an example we wish to predict label for """ . . .
nun_test = X.shape[6] A good implementation:
k ‘ ' - https://github.com/facebookresearch/faiss
Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[1,:]), axis = 1)
min_index = np.argmin(distances) '

Ypred[i] = f.ytrimin_index] #
Johnson et al, “Billion-scale similarity search with

return Ypred GPUs”, arXiv2017
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https://github.com/facebookresearch/faiss

What does this look like?
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1-nearest neighbor
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K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

dy(I1,15) = Z 14| do(I1, I2) = \/Z (7 -12)°
T P

dh
SPARINSY
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K-Nearest Neighbors: Distance Metric - Example

L1 Distance: Measures distance by moving along L2 Distance: Measures the straight-line
grid lines (like walking in a city with square blocks). distance (as the crow flies).
i p P ds(I1, I5) I — IP
di(I, L) =Y |IP - IZ| o(1, 1) \/Z(

B(112, 1/2)

A(L, 0)

O
w A(1, 0) 0(0,0)

¢OA) =04+ {001 =1 0,(0,A) = sqri((0-1)2 + (0-0)?) = sqrt(1?) = 1
d,(O,B) =|0-0.5/ +|0-0.5|=05+0.5=1 d,(0,B) = sqrt((0-1/~2)? + (0-1/72)?) = sqrt(1/2+1/2) = sqrt(1) = 1
d,(0,A) =d,(0B) =1 d,(0,A) = d,(0,A) =1
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
dy(L,B)= Y|P - B do(l, ) = va (@ -n)
P F
K=1 K=1
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K-Nearest Neighbors: try it yourself!

e® o
L)

http://vision.stanfor hin 231n-demos/knn
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http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

Whatis the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about the
algorithms themselves.

Very problem/dataset-dependent.
Must try them all out and see what works best.
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Setting Hyperparameters

|dea #1: Choose hyperparameters that
work best on the training data

train
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Setting Hyperparameters

|dea #1: Choose hyperparameters that BAD: K=1 always works
work best on the training data perfectly on training data

train
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Setting Hyperparameters

|dea #1: Choose hyperparameters that
work best on the training data

BAD: K =1 always works
perfectly on training data

train

|ldea #2: choose hyperparameters
that work best on test data

train

test
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Setting Hyperparameters

|dea #1: Choose hyperparameters that BAD: K=1 always works
work best on the training data perfectly on training data
train
|ldea #2: choose hyperparameters BAD: No idea how algorithm
that work best on test data will perform on new data
train test

Never do this!
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Setting Hyperparameters

|dea #1: Choose hyperparameters that BAD: K=1 always works
work best on the training data perfectly on training data
train
|ldea #2: choose hyperparameters BAD: No idea how algorithm
that work best on test data will perform on new data
train test
|dea #3: Split data into train, val; choose Better!

hyperparameters on val and evaluate on test

train validation test
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Setting Hyperparameters

train

|dea #4: Cross-Validation: Split data into folds, try
each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5
fold 1 fold 2 fold 3 fold 4 fold 5
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5
fold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but not used too frequently in deep learning
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

Bl Bt "IN

EV D =e Gl

[
K
3
s
159,
A
43
i
A
il

ﬁﬁjﬁﬂ-vih

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images Test images and nearest neighbors
el | A-YANESNEEEZED
EREE | B-AOERERNESE
1TEETHLE | SE-AREEEEREER
NFNERTL | £1r>Aoddrs@ixa
AESREE | &-00EHENEENES
EAFEERAR | P-aPEPSLsaNN
AQCEIEISE | - - -
AR | R - G R
HERecs | @-DEDODEREED
ENr=ls | J-ANRNENERRE
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Setting Hyperparameters xample of

. Cross-validation on k 5-fold cross-validation

for the value of k.
s Each point: single
- . 4 : . outcome.
(VN
P '““‘\L The line goes
e i through the mean, bars
o r ' . ‘\ indicated standard
. ' deviation
- (Seems that k ~=7 works best

=30 0 20 40 &0 -] 100 120

* for this data)
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What does this look like?

A~ HANEE SR
H->FOENEANE R
=~ NEEERRRLE
frdtg @ rS@7xN -
b > B A I 9 o i LY R
M*QDIFILQIMI
Z o e
EEE R
FPARRET
A=A
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What does this look like?

oA - ET S S e B A
SEd O (el el ISkl |
H-BHEEEEERLEE
grdlesgdrT@F)¥ -
PER BI=TC R AT
M*I!l”ﬂ'l&!lm:
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k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

ougnaimsceco Original Occluded Shifted (1 pixel) Tinted

n
public d

(All three images on the right have the same pixel distances to the one on the left)
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https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and must
predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on the K nearest training
examples

Distance metric and K are hyperparameters
Choose hyperparameters using the validation set

Only run on the test set once at the very end!

Stanford CS231n 10t Anniversary Lecture2- 50 April 3,2025



Linear Classifier
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Parametric Approach

X 10 numbers giving
~ f(x,W) '
class scores
Array of 32x32x3 numbers I
(3072 numbers total) W
parameters
or weights
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Parametric Approach: Linear Classifier

f(x,W) = Wx

Image

A

- F(x,W) .10 numbers giving

I class scores
Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights
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Parametric Approach: Linear Classifier
3072x1
f(x,W) [=|WIX

10x1 10x3072
10 numbers givin
- f(x,W) . u gIving

I class scores
Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights
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Parametric Approach: Linear Classifier
3072x1
f(x,W) [=|WKR Hb|10x
10x1  10x3072 ) ) o
- £(x,W) .10 numbers giving

I class scores
Array of 32x32x3 numbers
(3072 numbers total) W

Image

- Y
- i

parameters
or weights
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Neural Network

Linear
classifiers

This image is CC0 1.0 public domain
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http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

3 s5as \dense]

hse'|  jdensd

Max 128 Max pnc-lir\fﬁ: 1048 )
poaling pooling

[Krizhevsky et al. 2012] Linear layers

; S [dk : : 2 ] ]
£ —hirz ML F i R R R )
i e g : HEEEE b
% | ] | wiNRARNRERE
5 AN E AR eaeE e AR
i ;I__:_I:._:;sz_l,‘_éaas;55;|§;|zﬁzﬁzlﬁﬁzzgléaaleaaiﬁ
1i‘—hspE‘-l-E#Ehgméhiﬁiﬁgbsﬁftﬁtg-r{tE-i-i Ei—{#g#;*: E-—Eh!&i*itstghghsﬁE-l-ls-i-!'-i-{ur-;
2 3 -3-;.1351;]Iizjgi,‘aizijiiiijziilﬂii
[He et al. 2015]
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Recall CIFAR10

airplane i =1

automobile g ! | ’—ﬁ

bird Ak = e

cat -‘u gﬂ 50,000 training images
deer m‘g—gag ﬁ= each image is 32x32x3
dog HRE ' "Im 10,000 test images.
frog ,,.IC . ﬁl

horse b ;

ship

truck
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensorsinto a vector

Inputimage

56

231

24
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Example with animage with 4 pixels, and 3 classes (cat/dog/ship)
Algebraic Viewpoint

Flatten tensorsinto a vector

Inputimage

56

231

1.1

0.2 | -05 | 0.1 2.0
1.5 1.3 2.1 0.0
0 0.25 | 0.2 | -0.3

24

3.2

-1.2

-96.8

437.9

61.95

Cat score

Dog score

Ship score
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Interpreting a Linear Classifier

airplane [ 5 ”?.:z‘.ﬁ'i.
automobnle‘,ﬂ!ﬂﬁ@ﬁ .

Input image

bird AR EETHKE

cat T et R R B

deer .F“E.!.- 02 | 0.5 15 | 1.3 0 | 25
dog iﬂ*'!ﬁnhlw w 0.1 | 20 21 | 00 02 | 03
frg EIESa®”RESE ' . ;
rorse a3 B 4 P P A P T N R 5
ship a . E £ 2 = . i - n E Score -sz.e 4::7.9 61?95

ruck @ ek W o a8 @ iy

Stanford CS231n 10t Anniversary Lecture2- 61 April 3, 2025



Interpreting a Linear Classifier: Visual Viewpoint
airplane | 5 h?lﬂ:'iil

Input image

automobile . , = - = ﬁ . E

bird q ‘ .

cat Avia

deer .3“ 02 | -05 15 | 13 0 | .25
dog Eﬂk W 01 | 20 21 | 00 02 | 03
frog DS 3| P ; ; ;
horse o H.EE..!.E > I = <
ship Score | -968 437.9 61.95
truck

horse
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Interpreting a Linear Classifier: Geometric Viewpoint

- ‘ f(x,W) = Wx + b

"F‘S' \ car classifier
airplane classifier/ &%
2 e
e

Array of 32x32x3 numbers
(3072 numbers total)

= PPt
. -
e <>

\-* deer classifier

Catimage byNikita is licensed under CC-BY 2.0
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Hard cases for a linear classifier

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
l1<=L2norm<=2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else

Stanford CS231n 10t Anniversary

Lecture 2 -

64 April 3, 2025



Linear Classifier - Choose a good W

3.42

4.64
2.65
5:1

2.64
9959
-4.34
i B
-4.79
6.14

airplane -3.45 -0.51
automobile -8.87 6.04
bird 0.09 5:3%
cat 2.9 -4.,22
deer 4.48 G
dog 8.02 3.58
frog 3.78 4.49
horse 1.06 -4.37
ship -0.36 -2.09
truck -0.72 -2.93
Catimage by Nikita is licensed under CG-BY2,0; Carimage is CC0 1,0 public domain; Erog image s in the public domain

Define a loss function that quantifies
our unhappiness with the scores
across the training data.

Come up with a way of efficiently
finding the parameters that minimize
the loss function. (optimization)
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Suppose: 3 training examples, 3 classes.
With some W the scores  f(z, W) =Wz

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
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Suppose: 3 training examples, 3 classes.
With some W the scores  f(z, W) =Wz

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

A loss function tells how good
our current classifier is
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Suppose: 3 training examples, 3 classes.

: A loss function tells how good
With some W the scores  f(z, W) = Wz our current classifier is

Given a dataset of examples
N
{(:Ei? y%) 1=1

Where&;isimage and

cat 3.2 1.3 2.2 Yi is (integer) label
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
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Suppose: 3 training examples, 3 classes.

A loss function tells how good
With some W the scores  f(z, W) = Wz 5

our current classifier is
Given a dataset of examples

{(xi? y%) ;’Til

Where&;isimage and

cat 3.2 1.3 2.2 Yi is (integer) label

car 5.1 49 2.5 Loss over the dataset is a average

of loss over examples:
frog -1.7 2.0 -3.1 1
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Softmax classifier
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

cat 3.2
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

cat 3.2
car 5.1
frog -1.7

Stanford CS231n 10t Anniversary Lecture2-72 April 3, 2025



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

Probabilities
must be>=0

cat 3.2 24.5

exp

car 51 —164.0
frog -1.7 0.18

unnormalized
probabilities
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

Probabilities Probabilities
must be >=0 must sumto 1
cat 3.2 24.5 0.13
exp normalize
car 51 —164.0 |——| 0.87
unnormalized probabilities
probabilities
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

N 15

Probabilities Probabilities
must be >=0 must sumto 1
cat 3.2 24.5 0.13
exp normalize
car 5.1 —164.0 |——| 0.87
Unnormalized log- unnormalized probabilities
probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

Probabilities Probabilities
must be >=0 must sum to 1 Li = —log P(Y = 5| X = i)
cat 3.2 24.5 0.13 | - Li=-log(0.13)
€xp normalize =2.04
car 5.1 —164.0 |——| 0.87
Unnormalized log- unnormalized probabilities
probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

N 15

Probabilities Probabilities
must be >=0 must sumto 1 Li = —log P(Y = | X = ;)
cat 3.2 24.5 0.13 | — Li=-log(0.13)
exp normalize =2.04

car 51 —164.0 |——| 0.87
fop | L7 0.18 0.00 | Lmmseinecs mtor

likelihood of the observed data
Unnormalized log_ unnormalized probabi“ties (See CS 229 for details)
probabilities / logits probabilities
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s=f(zss W)  |P(Y =KX =2i) = 5| Softmax

N 15

Function
Probabilities Probabilities
must be >=0 must sumto 1 Li = —log P(Y = | X = ;)
cat 3.2 24.5 0.13 [ compare <=1 1.00
exp normalize
car 5.1 —164.0 |——| 0.87 0.00
frog -1.7 0.18 0.00 0.00
Unnormalized log- unnormalized probabilities Correct
probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

I — f(:l',‘%;W) P(Y k|X— mg) = Z ei

Softmax
Function

Probabilities Probabilities - .
must be >=0 must sumto 1 Iy =~ P =& =)
cat 3.2 24.5 0.13 [ compare =1 1.00
exp normalize Kullback-Leibler
car 5.]. 164.0 0.87 divergence 0.00
Dgr(P|Q) =
frog -1.7 0.18 0.00 | 0.00
: : P(y) log 0
Unnormalized log- unnormalized probabilities v ) Correct
probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s=f(zss W)  |P(Y =KX =2i) = 5| Softmax

N 15

Function
Probabilities Probabilities
must be >=0 must sumto 1 Li = —log P(Y = | X = ;)
cat 3.2 24.5 0.13 [ compare <=1 1.00
exp normalize
car 5.1 —1164.0 |——| 0.87 | crossEntropy 0.00
H(P, ) =
frog | -L.T 0.18 0.00 |, 752 oy 0.00
Unnormalized log- unnormalized probabilities Correct
probabilities / logits probabilities probs
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z;; € Function

N 15

Maximize probability of correct class Putting it all together:

;i — i Ll i
cat 3.2 SETHEREREES EE;.- 7)
car 5.1
frog -1.7
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z_»,' € Function

Maximize probability of correct class Putting it all together:
LT: — _IDg P(Y — y’:‘,‘X — :I:'I) L' e 10g Esyz' ‘
cat 3.2 1 ( > €’ )
1: What is the min/max possible softmax loss L.?
car 5.1 Q /maxp
fro 1.7 Q2: Atinitialization all s; will be approximately equal;
5 what is the softmax loss L;, assuming C classes?
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

s = f(zi; W) |P(Y =k|X =) = 55| Softmax

Sj .
Z_»,' € Function

Maximize probability of correct class Putting it all together:
LT: —_ — IDg P(Y — y’:‘,‘X — :I:'I) L-i e 10g( ESFEISJ )
cat 3.2 > €’

51 Q2: At initialization all s will be
' approximately equal; what is the loss?

frog -1.7 A: -log(1/C) = log(C),
If C=10,thenL;=log(10) > 2.3

car
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Coming up: fx,W) =Wx+b

- Regularization
- Optimization
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Reading Assignment - SVM Loss
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where I;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 |

Li=2{0 S o 2 8t
car 5°l 4-9 2.5 izy: 51T Sy + 1 otherwise
frog -1.7 2.0 -3.1 = ) max(0,5; = sy, +1)

JFYi
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Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss:

With some W the scores  f(z, W) = Wz

Loss

Sy;— 53

differencein
scores between
correct and

Cat 3,2 1.3 2.2 inforrect class

Li:Z{U if 8y, > 55+ 1
car 5]. 49 25 Pl PRt otherwise
frog -1.7 2.0 -3.1 = Z_mw(ﬂ,sj—syﬁl)
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Suppose: 3 training examples, 3 classes.
With some W the scores  f(z, W) =Wz

Interpreting Multiclass SVM loss:

Loss
Sy;— Sj
W—J differencein
scores between
1 correct and
incorrect class

L:Z 0 ifSyiE‘Sj—Fl
1 8; — 8y, +1 otherwise
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Suppose: 3 training examples, 3 classes.
With some W the scores  f(z, W) =Wz

Interpreting Multiclass SVM loss:

Loss
Sy;— Sj
W—J differencein
scores between
1 correct and
incorrect class

L:Z 0 ifSyiE‘Sj—Fl
1 8; — 8y, +1 otherwise
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:
L; = Z#’y; max(0, s; — 8y, + 1)

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 B = Z#’y; max(0, s; — 8y, + 1)
car 5]. 49 25 =max(0,5.1-3.2+1)

+max(0,-1.7-3.2+ 1)
frog -1.7 2.0 -3.1 = max(0, 2.9) + max(0, -3.9)

=2.9+0
Losses: 2.9 =2.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 B = Z#’y; max(0, s; — 8y, + 1)
car 5]. 49 25 =max(0,1.3-4.9+1)

+max(0, 2.0 - 4.9 + 1)
frog -1.7 2.0 -3.1 = max(0, -2.6) + max(0, -1.9)

=0+0
Losses: 2.9 0 :o+
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:

cat 3.2 1.3 2.2 B = Z#’y; max(0, s; — 8y, + 1)
car 5.1 4.9 2.5 = max(0,2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)

=6.3+6.6
Losses: 2.9 0 12.9 =12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:
L; = Z#’y; max(0, s; — 8y, + 1)

cat 3.2 1.3 2.2
car 5 ) l 4' 9 2 ‘5 Loss over full dataset is average:
frog -1.7 2.0 -3.1 L = # Z:il L

Losses: 2.9 0 12.9 L=(2.9+0+12.9)/3
=5.27
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores  f(z, W) =Wz L; = Z:f%yi max(0, sj — sy, +1)

Q1: What happens to loss if car
scores decrease by 0.5 for this
training example?

Q2: what is the min/max possible
cat 1.3 SVM loss L;?
car 4.9

Q3: At initialization W is small so all
frog 2.0 s= 0. What is the loss L;, assuming N

Losses: 0 examples and C classes?

Stanford CS231n 10t Anniversary Lecture 2-95 April 3,2025



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:
L; = Z#’y; max(0, s; — 8y, + 1)

cat 3.2 1.3 2.2

car >-1 4.9 2:3 Q4: What if the sum
frog -1.7 2.0 -3.1 was over all classes?

Losses: 2.9 0 12.9 (including j=y_i)
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:
L; = Z#’y; max(0, s; — 8y, + 1)

cat 3.2 1.3 2.2

car >.1 4.9 2.5 Q5: What if we used
frog -1.7 2.0 -3.1 mean instead of sum?

Losses: 2.9 0 12.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores  f(z, W) =Wz

Given an example (:E;.; : yi)
where z;stheimage and
where ;s the (integer) label,

and using the shorthand for the scores
vector: s = f(zi, W)

the SVM loss has the form:
L; = Z#’y; max(0, s; — 8y, + 1)

cat 3.2 1.3 2.2
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Q6: What if we used

Li = )., max(0,s; — sy, + 1)2
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores  f(z, W) =Wz

0SS

Sy;— 53

W_J differencein

scores between
correct and

cat 3.2 1.3 2.2 incorrect class
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Q6: What if we used

Li =) ;,, max(0,s; — sy, + 1)2
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Multiclass SVM Loss: Example code

L = Zj#i‘/z‘ maX(Oa Sj — Sy, T 1)

def L_i vectorized(x, y, W):

scores = W.dot(x) # First calculate scores

margins = np.maximum(©, scores - scores[y] + 1) #Thencalculatethemarginss;-s;+1
margins[y] = © #onlysumjis noty;, sowhenj=y; setto zero.
loss i = np.sum(margins) #sumacross allj

return loss i
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Softmax vs. SVM hinge loss (SVM)
-2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
—{ | 0.86 max(0, 0.86 - 0.28 + 1)
001 | -005 | 0.1 | 0.05 -15 0.0 w0
0.28 1.58
07 | 02 | 005 | 0.16 22 + 0.2
00 |-045| -0.2 | 0.03 -44 -03 cross-entropy loss (Softmax)
-2.85 0.058 0.016
14 56 b
ex normalize
> | 0.86 _p. 236 | — 5| 0631 | -109(0:353)
:IJZ' (to sum =
to one) 0.452
0.28 1.32 0.353
Yi | 2
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Softmax vs. SVM

L; = —log( 513 ) Li =}, max(0,s; — sy, +1)
3
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Softmax vs. SVM

L; = —log( 5 ZJ ) Li = ;,, max(0,s; — sy, + 1)
assume scores: Q: What is the softmax loss and the
10, -2, 3] SVM loss?

10,9, 9]

10, -100, -100]

and 1y, =0
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Softmax vs. SVM

L; —l{})g(E 6J) Li = ;,, max(0,s; — sy, + 1)
assume scores: Q: What is the softmax loss and the
20, -2, 3] SVM loss if  double the correct
7 class score from 10 ->20?

20,9, 9]

20,-100,-100]

and |y, =0
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