
Stanford CS231n 10th Anniversary Lecture 4 - April 10, 20251

Lecture 4:
Neural Networks and
Backpropagation

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Administrative: Project Proposal

Due Fri 4/25

TA expertise is posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)

3

http://cs231n.stanford.edu/office_hours.html

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Administrative: Discussion Section

Discussion section tomorrow

(led by Matthew Jin, With Emily Jin’s help):

Backpropagation

4

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 20255

Recap

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Recap

- We have some dataset of (x,y)
- We have a score function:
- We have a loss function:

e.g.

Softmax

SVM/hinge Loss (refer to
Lecture 2 reading assignment)

Full loss

6

difference in scores between
correct and incorrect class

Loss

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 20257

Finding the best W: Optimize with Gradient Descent

Landscape image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 20258

Numerical gradient: slow , approximate , easy to write ☺
Analytic gradient: fast ☺, exact ☺, error-prone 

In practice: Derive analytic gradient, check your
implementation with numerical gradient

Gradient descent

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Stochastic Gradient Descent (SGD)

9

Full sum is expensive
when N is large!

Approximate sum using
a minibatch of examples
32 / 64 / 128 / 256

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Last time: fancy optimizers

SGD

SGD+Momentum

RMSProp

Adam

10

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Last time: learning rate scheduling

Reduce learning rate

Step: Reduce learning rate at a few fixed points.
E.g. for ResNets, multiply LR by 0.1 after epochs
30, 60, and 90.

Cosine:

Linear:

Inverse sqrt:

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

11

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202512

Today:

Deep Learning

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202513

“Teddy bears working on new AI research on
the moon in the 1980s.”

Image source: Sam Altman, https://openai.com/dall-e-2/, https://twitter.com/sama/status/1511724264629678084

DALL-E 2

“Rabbits attending a college seminar on
human anatomy.”

“A wise cat meditating in the Himalayas
searching for enlightenment.”

https://openai.com/dall-e-2/
https://twitter.com/sama/status/1511724264629678084

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202514

Ramesh et al., Hierarchical Text-Conditional Image
Generation with CLIP Latents, 2022.

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

DALL-E 3

In a fantastical setting, a

highly detailed furry

humanoid skunk with

piercing eyes confidently

poses in a medium shot,

wearing an animal hide

jacket. The artist has

masterfully rendered the

character in digital art,

capturing the intricate details

of fur and clothing texture.

15

Betker, James, et al. "Improving image generation
with better captions.” Computer Science. https://cdn.
openai. com/papers/dall-e-3. pdf (2023).

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

DALL-E 3

16

Betker, James, et al. "Improving image generation
with better captions.” Computer Science. https://cdn.
openai. com/papers/dall-e-3. pdf (2023).

An illustration from a graphic novel.

A bustling city street under the shine

of a full moon. The sidewalks

bustling with pedestrians enjoying

the nightlife. At the corner stall, a

young woman with fiery red hair,

dressed in a signature velvet cloak, is

haggling with the grumpy old

vendor. The grumpy vendor, a tall,

sophisticated man wearing a sharp

suit, who sports a noteworthy

mustache is animatedly conversing

on his steampunk telephone.

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202517

GPT-4

Image source: https://openai.com/research/gpt-4

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202518

Kirillov et al., Segment Anything, 2023

Segment Anything Model (SAM)

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Sora

19

https://openai.com/research/video-generation-models-as-world-simulators

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Sora

● Animating Images

(generated by DALL-E)

● Video-to-video editing

20

https://openai.com/research/video-generation-models-as-world-simulators

A Shiba Inu dog wearing a beret and black turtleneck.

change the video setting to be different than
a mountain? perhaps joshua tree

put the video in space with a rainbow road

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Sora

● More compute

21

https://openai.com/research/video-generation-models-as-world-simulators

Base Compute 4x Compute 32x Compute

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202522

Neural Networks

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202523

Neural networks: the original linear classifier

(Before) Linear score function:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202524

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Why do we want non-linearity?

25

x

y

Cannot separate red and
blue points with linear
classifier

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202526

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y))

Cannot separate red and
blue points with linear
classifier

After applying feature
transform, points can be
separated by linear
classifier

Why do we want non-linearity?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202527

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202528

Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202529

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202530

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: learning 100s of templates

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10. Share templates between classes

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

The function. is called the activation function.
Q: What if we try to build a neural network without one?

31

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

The function is called the activation function.
Q: What if we try to build a neural network without one?

32

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

A: We end up with a linear classifier again!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202533

Activation functions
ReLU is a good default
choice for most problems

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202534

“Fully-connected” layers

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202535

Example feed-forward computation of a neural network

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202536

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202537

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202538

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202539

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202540

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202541

Setting the number of layers and their sizes

more neurons = more capacity

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202542

(Web demo with ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

TensorFlow Play Ground: https://playground.tensorflow.org/

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://playground.tensorflow.org/

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202543

This image by Fotis Bobolas is licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202544

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic
terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202545

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic
terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202546

sigmoid activation function

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic
terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202548

This image is CC0 Public Domain

Biological Neurons:
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for
computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202549

This image is CC0 Public Domain

Biological Neurons:
Complex connectivity patterns

But neural networks with random
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, IEEE/CVF
International Conference on Computer Vision 2019

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202550

Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202551

Plugging in neural networks with loss functions

Nonlinear score function

Hinge Loss on predictions

Regularization

Total loss: data loss + regularization

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

If we can compute then we can learn W1 and W2

52

Problem: How to compute gradients?

Nonlinear score function

Regularization

Total loss: data loss + regularization

Hinge Loss on predictions

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202553

(Bad) Idea: Derive on paper

Problem: What if we want to
change loss? E.g. use softmax
instead of hinge? Need to re-derive
everything from scratch!

Problem: Very tedious: Lots of matrix
calculus, need lots of paper

Problem: Not feasible for very
complex models!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202554

x

W

hinge
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202555

input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and

Geoffrey Hinton, 2012. Reproduced with permission.

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202556

Really complex neural
networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

https://twitter.com/karpathy/status/597631909930242048?lang=en

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202558

Solution: Backpropagation

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202559

Backpropagation: a simple example

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202560

Backpropagation: a simple example

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202561

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202562

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202563

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202564

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202565

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202566

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202567

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202568

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202569

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202570

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202571

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202572

Backpropagation: a simple example

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202573

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202574

Backpropagation: a simple example

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202575

f

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202576

f

“local gradient”

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202577

f

“local gradient”

“Upstream
gradient”

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202578

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202579

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202580

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202581

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202582

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202583

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202584

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202585

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202586

Another example:

Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202587

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202588

Another example:

Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202589

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202590

Another example:

Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202591

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202592

Another example:

Upstream
gradient

Local
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202593

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202594

Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2 (both inputs!)

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202595

Another example:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202596

Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202597

Another example:

Sigmoid

Sigmoid
function

Computational graph
representation may not be
unique. Choose one where
local gradients at each
node can be easily
expressed!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202598

Another example:

Sigmoid

Sigmoid
function

Sigmoid local
gradient:

Computational graph
representation may not be
unique. Choose one where
local gradients at each
node can be easily
expressed!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 202599

Another example:

Sigmoid

Sigmoid
function

Sigmoid local
gradient:

Computational graph
representation may not be
unique. Choose one where
local gradients at each
node can be easily
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e-1)) (1/(1+e-1))] = 0.2

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025100

Another example:

Sigmoid

Sigmoid
function

Sigmoid local
gradient:

Computational graph
representation may not be
unique. Choose one where
local gradients at each
node can be easily
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025101

add gate: gradient distributor

Patterns in gradient flow

+

3

4

7

2

2

2

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025102

add gate: gradient distributor

Patterns in gradient flow

+

3

4

7

2

2

2

mul gate: “swap multiplier”

×

2

3

6

5

5*3=15

2*5=10

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025103

add gate: gradient distributor

Patterns in gradient flow

+

3

4

7

2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×

2

3

6

5

5*3=15

2*5=10

7

7

7

4+2=6

4

2

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025104

add gate: gradient distributor

Patterns in gradient flow

+

3

4

7

2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×

2

3

6

5

5*3=15

2*5=10

4

5

5

9

0

9

7

7

7

4+2=6

4

2

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025105

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025106

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Base case

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025107

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Sigmoid

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025108

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Add gate

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025109

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Add gate

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025110

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Multiply gate

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025111

Backprop Implementation:
“Flat” code Forward pass:

Compute output

Multiply gate

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025115

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to cache some
values for use in
backward

Gate / Node / Function object: Actual PyTorch code

Upstream
gradient

Multiply upstream
and local gradients

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025116

Example: PyTorch operators

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025117

Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025118

PyTorch sigmoid layer

Source

Forward

Forward actually
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025119

Source

Forward

Backward

PyTorch sigmoid layer

Forward actually
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025120

So far: backprop with scalars

What about vector-valued functions?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025121

Recap: Vector derivatives

Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025122

Recap: Vector derivatives

Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if
it changes by a small
amount then how much
will y change?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025123

Recap: Vector derivatives

Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if
it changes by a small
amount then how much
will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it
changes by a small amount
then how much will each
element of y change?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025124

f

Backprop with Vectors

Loss L still a scalar!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025125

f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025126

f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025127

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Backprop with Vectors

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025128

f

“local
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

“Downstream
gradients”

Backprop with Vectors

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025129

f

“local
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

Jacobian
matrices

For each element of z, how
much does it influence L?

“Downstream
gradients”

Backprop with Vectors

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025130

f

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

Jacobian
matrices

For each element of z, how
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Backprop with Vectors

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025131

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Dy

Dx

Gradients of variables wrt loss have same dims as the original variable

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025132

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025133

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

Upstream
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025134

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

Jacobian dz/dx
[1 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 0]

Upstream
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025135

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025136

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

4D dL/dx:
[4]
[0]
[5]
[0]

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025137

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

4D dL/dx:
[4]
[0]
[5]
[0]

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025138

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors

4D output z:
[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]4D dL/dx:
[4]
[0]
[5]
[0]

Upstream
gradient

Jacobian is sparse:
off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

z

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025139

f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

dL/dx always has the
same shape as x!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025140

f

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

For each element of z, how
much does it influence L?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025141

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

For each element of z, how
much does it influence L?

For each element of y, how much does
it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025142

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)]

Jacobian
matrices

For each element of z, how
much does it influence L?

For each element of y, how much does
it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[(Dy×My)×(Dz×Mz)]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025143

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

Also see derivation in the course notes:
http://cs231n.stanford.edu/handouts/linear-backprop.pdf

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025144

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have
N=64, D=M=4096

Each Jacobian takes ~256 GB of memory!
Must work with them implicitly!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025145

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y are

affected by one
element of x?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025146

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y are

affected by one
element of x?
A: affects the
whole row

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025147

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y are

affected by one
element of x?
A: affects the
whole row

Q: How much does
affect ?

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025148

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y are

affected by one
element of x?
A: affects the
whole row

Q: How much does
affect ?
A:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025149

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y are

affected by one
element of x?
A: affects the
whole row [N×D] [N×M] [M×D]

Q: How much does
affect ?
A:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025150

Backprop with Matrices

x: [N×D]
[2 1 -3]
[-3 4 2]

w: [D×M]
[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

[N×D] [N×M] [M×D] [D×M] [D×N] [N×M]

By similar logic:

These formulas are easy
to remember: they are the
only way to make shapes
match up!

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025151

● (Fully-connected) Neural Networks are stacks of linear functions and nonlinear
activation functions; they have much more representational power than linear classifiers

● backpropagation = recursive application of the chain rule along a computational graph
to compute the gradients of all inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement the forward()
/ backward() API

● forward: compute result of an operation and save any intermediates needed for gradient
computation in memory

● backward: apply the chain rule to compute the gradient of the loss function with respect
to the inputs

Summary for today:

Stanford CS231n 10th Anniversary Lecture 4 - April 10, 2025

Next Time: Convolutional Neural Networks!

152

	Slide 1
	Slide 3: Administrative: Project Proposal
	Slide 4: Administrative: Discussion Section
	Slide 5: Recap
	Slide 6
	Slide 7: Finding the best W: Optimize with Gradient Descent
	Slide 8: Gradient descent
	Slide 9: Stochastic Gradient Descent (SGD)
	Slide 10: Last time: fancy optimizers
	Slide 11: Last time: learning rate scheduling
	Slide 12: Today: Deep Learning
	Slide 13: DALL-E 2
	Slide 14
	Slide 15: DALL-E 3
	Slide 16: DALL-E 3
	Slide 17: GPT-4
	Slide 18: Segment Anything Model (SAM)
	Slide 19: Sora
	Slide 20: Sora
	Slide 21: Sora
	Slide 22
	Slide 23: Neural networks: the original linear classifier
	Slide 24: Neural networks: 2 layers
	Slide 25: Why do we want non-linearity?
	Slide 26: Why do we want non-linearity?
	Slide 27: Neural networks: also called fully connected network
	Slide 28: Neural networks: 3 layers
	Slide 29: Neural networks: hierarchical computation
	Slide 30: Neural networks: learning 100s of templates
	Slide 31: Neural networks: why is max operator important?
	Slide 32: Neural networks: why is max operator important?
	Slide 33: Activation functions
	Slide 34: Neural networks: Architectures
	Slide 35: Example feed-forward computation of a neural network
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50: Be very careful with your brain analogies!
	Slide 51: Plugging in neural networks with loss functions
	Slide 52: Problem: How to compute gradients?
	Slide 53: (Bad) Idea: Derive on paper
	Slide 54: Better Idea: Computational graphs + Backpropagation
	Slide 55: Convolutional network (AlexNet)
	Slide 56: Really complex neural networks!!
	Slide 57: Neural Turing Machine
	Slide 58: Solution: Backpropagation
	Slide 59: Backpropagation: a simple example
	Slide 60: Backpropagation: a simple example
	Slide 61: Backpropagation: a simple example
	Slide 62: Backpropagation: a simple example
	Slide 63: Backpropagation: a simple example
	Slide 64: Backpropagation: a simple example
	Slide 65: Backpropagation: a simple example
	Slide 66: Backpropagation: a simple example
	Slide 67: Backpropagation: a simple example
	Slide 68: Backpropagation: a simple example
	Slide 69: Backpropagation: a simple example
	Slide 70: Backpropagation: a simple example
	Slide 71: Backpropagation: a simple example
	Slide 72: Backpropagation: a simple example
	Slide 73: Backpropagation: a simple example
	Slide 74: Backpropagation: a simple example
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Patterns in gradient flow
	Slide 102: Patterns in gradient flow
	Slide 103: Patterns in gradient flow
	Slide 104: Patterns in gradient flow
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132: Backprop with Vectors
	Slide 133: Backprop with Vectors
	Slide 134: Backprop with Vectors
	Slide 135: Backprop with Vectors
	Slide 136: Backprop with Vectors
	Slide 137: Backprop with Vectors
	Slide 138: Backprop with Vectors
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151: Summary for today:
	Slide 152: Next Time: Convolutional Neural Networks!

