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Administrative: Assignment 1

Assignment 1 Due Wednesday 4/23 at 11:59pm

- K-Nearest Neighbor

- Linear classifiers: SVM, Softmax

- Two-layer neural network

- Image features
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Administrative: Project Proposal

Due Fri 4/25

TA expertise is posted on the webpage.

http://cs231n.stanford.edu/office_hours.html

http://cs231n.stanford.edu/office_hours.html
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Hi I’m Justin

2010 2015 2020 2025

Stanford, PhD

Facebook AI Research

University of Michigan

World Labs

I taught CS231N at 

Stanford from 2015-2018

I taught the same course 

at Michigan 2019-2022
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CS231n: Deep Learning for Computer Vision

● Deep Learning Basics (Lecture 2 – 4)

● Perceiving and Understanding the Visual World (Lecture 5 – 12)

● Generative and Interactive Visual Intelligence (Lecture 13 – 16)

● Human-Centered Applications and Implications (Lecture 17 – 18)
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Recap: Image Classification with Linear Classifier

f(x,W) = Wx + b

6



Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

Recap: Loss Function

- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

Softmax

Full loss

7
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SGD

SGD+Momentum

RMSProp

Adam

Recap: Optimization 

8
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Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn 
one template per class

Geometric Viewpoint

Linear classifiers can 
only draw linear 
decision boundaries

9
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Linear score function:

2-layer Neural Network

Last time: Neural Networks

x hW1 sW2

3072 100 10

10
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x

W

hinge 
loss

R

+ L
s (scores)

Last time: Computation Graph

*

11
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Last time: Backpropagation

12
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f

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Backprop with Vectors

13
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much does 
it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[(Dy×My)×(Dz×Mz)] 

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!
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CS231n: Deep Learning for Computer Vision

● Deep Learning Basics (Lecture 2 – 4)

● Perceiving and Understanding the Visual World (Lecture 5 – 12)

● Generative and Interactive Visual Intelligence (Lecture 13 – 16)

● Human-Centered Applications and Implications (Lecture 17 – 18)
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CS231n: Deep Learning for Computer Vision

● Deep Learning Basics (Lecture 2 – 4)

● Perceiving and Understanding the Visual World (Lecture 5 – 12)

● Generative and Interactive Visual Intelligence (Lecture 13 – 16)

● Human-Centered Applications and Implications (Lecture 17 – 18)
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Today: Convolutional Networks

x h s

Fully-Connected Layer Activation Function

We have 
already 

seen these
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Today: Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer

We have 
already 

seen these

Today: Image-
specific 

operators
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cat
dog
bird
deer
truck

Image Classification: A core task in Computer Vision

19

(assume given a set of labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

Pixel space

20

f(x) = Wx

Class 
scores
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Image features

21

f(x) = Wx
Class 
scores

Feature Representation
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Example: Color Histogram

22

+1



Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

Example: Histogram of Oriented Gradients (HoG)

23

Divide image into 8x8 pixel regions
Within each region quantize edge 
direction into 9 bins

Example: 320x240 image gets divided 
into 40x30 bins; in each bin there are 9 
numbers so feature vector has 30*40*9 = 
10,800 numbers

Lowe, “Object recognition from local scale-in variant features”, ICCV 1999
Dalal and Triggs, "Histograms of orient ed gradients for human detection ," CVPR 2005
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Example: Bag of Words

24

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005
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Image Features

25
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Feature Extraction

Image features vs. ConvNets

26

f
10 numbers giving 
scores for classes

training

training

10 numbers giving 
scores for classes

Krizhevsky, Sutskever, and Hinton, “Imagenet classification 

with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012. 
Reproduced with permission.
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Linear score function:

2-layer Neural Network

Last Time: Neural Networks

x hW1 sW2

3072 100 10

27

32x32x3
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Linear score function:

2-layer Neural Network

Last Time: Neural Networks

x hW1 sW2

3072 100 10

28

32x32x3

Problem: The spatial 
structure of images 

is destroyed!
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Next: Convolutional Neural Networks

29

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1
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Next: Convolutional Neural Networks

30

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Convolution and pooling operators extract 
features while respecting 2D image structure
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Next: Convolutional Neural Networks

31

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Convolution and pooling operators extract 
features while respecting 2D image structure

Fully-Connected layers form an 
MLP at the end to predict scores
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Next: Convolutional Neural Networks

32

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Trained end-to-end with backprop + gradient descent
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A bit of history:
Gradient-based learning applied to 
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

33
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Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

A bit of history:
ImageNet Classification with Deep 
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

34
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~2012 – 2020: ConvNets dominate all vision tasks

35

Detection

[Farabet et al., 2012]
Figures copyright Clement  Farabet, 2012. Reproduced with permission. Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission. 

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection
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[Vinyals et al., 2015]
[Karpathy and Fei-Fei, 2015]

A white teddy bear sitting in 
the grass

A man riding a wave on top 
of a surfboard

A man in a baseball 
uniform throwing a ball

A cat sitting on a suitcase 
on the floor

A woman is holding a cat 
in her hand

All images are CC0 Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/

https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

A woman standing on a beach 
holding a surfboard

36

~2012 – 2020: ConvNets dominate all vision tasks
Image Captioning

https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2
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~2012 – 2020: ConvNets dominate all vision tasks

37

Rombach et al, “High-Resolution Image Synthesis 
with Latent Diffusion Models”, CVPR 2022

A shirt with the 
inscription: “I love 

generative 
models!”

Text-to-Image Generation

A watercolor 
painting of a chair 
that looks like an 

octopus

A painting of a 
squirrel eating a 

burger

An image of a half 
mouse half 

octopus

A zombie in the 
style of Picasso



Stanford CS231n 10th Anniversary Lecture 5 - April 15, 202538

~2012 – 2020: ConvNets dominate all vision tasks

This class used to be focused on ConvNets!
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2021 - Present: Transformers have taken over

2017: Transformers 
for language tasks

Vaswani et al, “Attention is 
all you need”, NeurIPS 2017
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2021 - Present: Transformers have taken over

2017: Transformers 
for language tasks

Vaswani et al, “Attention is 
all you need”, NeurIPS 2017

2021: Transformers 
for vision tasks

Dosovitskiy et al, “An Image is Worth 
16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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2021 - Present: Transformers have taken over

2017: Transformers 
for language tasks

Vaswani et al, “Attention is 
all you need”, NeurIPS 2017

2021: Transformers 
for vision tasks

Dosovitskiy et al, “An Image is Worth 
16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021

Wait until 
Lecture 8!
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Convolutional Neural Networks

42
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Today: Convolutional Networks

x h s

Fully-Connected Layer Activation Function

We have 
already 

seen these
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Today: Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer

We have 
already 

seen these

Today: Image-
specific 

operators
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Today: Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer

We have 
already 

seen these

Today: Image-
specific 

operators
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3072
1

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10

46
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3072
1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input (a 
3072-dimensional dot product)

1
10

47
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32

32

3

Convolution Layer

32x32x3 image -> preserve spatial structure

width

height

depth

48
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

49



Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

50
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32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

51
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32

32

3

Convolution Layer

52
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32

32

3

Convolution Layer

53
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32

32

3

Convolution Layer

54
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32

32

3

Convolution Layer

55
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32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation map

1

28

28

56
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32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all spatial 
locations

activation maps

1

28

28

consider a second, green filter

57
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32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Consider 6 filters, 
each 3x5x5 

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Convolution Layer

Slide inspiration: Justin Johnson

58
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32

3

3x32x32 image

32

6 activation maps,
each 1x28x28

Also 6-dim bias vector:

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Convolution Layer

Slide inspiration: Justin Johnson

59
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32

3

3x32x32 image

32

28x28 grid, at each 
point a 6-dim vector

Also 6-dim bias vector:

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Convolution Layer

Slide inspiration: Justin Johnson

60
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32

3

2x3x32x32
Batch of images

32

2x6x28x28
Batch of outputs

Also 6-dim bias vector:

Convolution 
Layer

6x3x5x5 
filters

Convolution Layer

Slide inspiration: Justin Johnson

61
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W

Cin

N x Cin x H x W
Batch of images

H

N x Cout x H’ x W’
Batch of outputs

Also Cout-dim bias vector:

Convolution 
Layer

Cout x Cinx Kw x Kh

filters Cout

Convolution Layer

Slide inspiration: Justin Johnson

62
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32

32

3

28

28

6

63

A ConvNet is a neural network with Conv layers

CONV

e.g. 6 
5x5x3 
filters
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32

32

3

CONV

e.g. 6 
5x5x3 
filters 28

28

6

CONV

e.g. 10 
5x5x6 
filters

CONV
….

10

24

24

64

A ConvNet is a neural network with Conv layers
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32

32

3

CONV
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV
ReLU
e.g. 10 
5x5x6 
filters

CONV
ReLU

….

10

24

24

65

A ConvNet is a neural network with Conv layers
with activation functions!
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32

32

3

28

28

Conv ReLU

Linear classifier: One template per class

66

What do Conv filters learn?
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MLP: Bank of whole-image templates

32

32

3

28

28

Conv ReLU

67

What do Conv filters learn?
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First-layer conv filters: local image templates
(Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

32

32

3

28

28

Conv ReLU

68

What do Conv filters learn?
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Deeper conv layers: Harder to visualize
Tend to learn larger structures e.g. eyes, letters

69

What do Conv filters learn?

6th layer conv layer from an ImageNet model

Visualization from [Springenberg et al, ICLR 2015]

32

32

3

28

Conv ReLU
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Convolution: Spatial Dimensions

32

32

3

28

Conv ReLU

W1: 6x3x5x5

b1: 6
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5

In general
Input: W
Filter: K
Output: W – K + 1
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Convolution: Spatial Dimensions

7

7

Input: 7x7
Filter: 3x3
Output: 5x5

In general
Input: W
Filter: K
Output: W – K + 1

Problem: Feature 
maps shrink with 
each layer!
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Input: 7x7
Filter: 3x3
Output: 5x5

Convolution: Spatial Dimensions

In general
Input: W
Filter: K
Padding: P
Output: W – K + 1 + 2P

Problem: Feature 
maps shrink with 
each layer!

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Solution: Add 
padding around 
the input before 
sliding the filter
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Input: 7x7
Filter: 3x3
Output: 5x5

Convolution: Spatial Dimensions

In general
Input: W
Filter: K
Padding: P
Output: W – K + 1 + 2P

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Common setting:
P = (K – 1) / 2
Means output has 
same size as input
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Receptive Fields

Input Output

For convolution with kernel size K, each element in the 
output depends on a K x K receptive field in the input

Slide inspiration: Justin Johnson

80
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Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Be careful – “receptive field in the input” vs. “receptive field in the previous layer”

Slide inspiration: Justin Johnson

Receptive Fields

81
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Input Output

Slide inspiration: Justin Johnson

Receptive Fields

82

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Problem: For large images we need many layers for 
each output to “see” the whole image image
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Input OutputProblem: For large images we need many layers for 
each output to “see” the whole image image

Solution: Downsample inside the network
Slide inspiration: Justin Johnson

Receptive Fields

83

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)
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7

7

84

Input: 7x7
Filter: 3x3
Stride: 2

Strided Convolution
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7

7

85

Input: 7x7
Filter: 3x3
Stride: 2

Strided Convolution
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7

7

86

Input: 7x7
Filter: 3x3
Stride: 2
Output: 3x3

Strided Convolution
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7

7

87

Input: 7x7
Filter: 3x3
Stride: 2
Output: 3x3

In general:
Input: W
Filter: K
Padding: P
Stride: S

Output:
(W – K + 2P) / S + 1

Strided Convolution
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Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: ? 
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Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
32 = (32+2*2-5)/1+1
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Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: ?
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Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Parameters per filter: 3*5*5 + 1 (for bias) = 76

10 filters, so total is 10 * 76 = 760
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Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Number of multiply-add operations?
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Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Number of multiply-add operations: 768,000
10*32*32 = 10,240 outputs
Each output is the inner product of two 3x5x5 tensors (75 elems) 
Total = 75*10240 = 768K
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Convolution Summary

Input: Cin x H x W
Hyperparameters:
- Kernel size: KH x KW

- Number filters: Cout

- Padding: P
- Stride: S
Weight matrix: Cout x Cin x KH x KW

giving Cout filters of size Cin x KH x KW

Bias vector: Cout

Output size: Cout x H’ x W’ where:
- H’ = (H – K + 2P) / S + 1
- W’ = (W – K + 2P) / S + 1

Common settings:
KH = KW (Small square filters)
P = (K – 1) / 2  (”Same” padding)
Cin, Cout = 32, 64, 128, 256 (powers of 2)
K = 3, P = 1, S = 1 (3x3 conv)
K = 5, P = 2, S = 1 (5x5 conv)
K = 1, P = 0, S = 1 (1x1 conv)
K = 3, P = 1, S = 2 (Downsample by 2)
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PyTorch Convolution Layer

We didn’t talk about groups or dilation…
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Other Types of Convolution

Cin

W

H

So far: 2D Convolution

Input: Cin x H x W

Weights: Cout x Cin x K x K
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Other Types of Convolution

Cin

W

H Cin

W

So far: 2D Convolution

Input: Cin x H x W

Weights: Cout x Cin x K x K

1D Convolution

Input: Cin x W

Weights: Cout x Cin x K
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Other Types of Convolution

Cin

W

H

So far: 2D Convolution

Input: Cin x H x W

Weights: Cout x Cin x K x K

3D Convolution

Input: Cin x H x W x D

Weights: Cout x Cin x K x K x K

W

D

HCin-dim vector 

at each point 

in the volume
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Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer

We have 
already 

seen these

Today: Image-
specific 

operators
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Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer

We have 
already 

seen these

Today: Image-
specific 

operators
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64 x 224 x 224
64 x 112 x 112

Hyperparameters:
Kernel Size
Stride
Pooling function

Given an input C x H x W,
downsample each 1 x H x W plane

Pooling Layers: Another way to downsample
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Pooling Layers: Another way to downsample

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Max pooling with 2x2 
kernel size and stride 2 6 8

3 4

Gives invariance to small spatial 
shifts. No learnable parameters.

64 x 224 x 224
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Pooling Summary

Input: C x H x W
Hyperparameters:
- Kernel size: K
- Stride: S
- Pooling function: max, avg
Output size: C x H’ x W’ where:
- H’ = (H – K) / S + 1
- W’ = (W – K) / S + 1
No learnable parameters

Common setting:
max, K=2, S=2 => Gives 2x downsampling
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Convolution and Pooling: Translation Equivariance

Conv or Pool

H x W x C H’ x W’ x C’

Translate
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Convolution and Pooling: Translation Equivariance

Conv or Pool

Translate

H x W x C H’ x W’ x C’

Conv or Pool

Translate
Conv(Translate(X)) 

= Translate(Conv(X))
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Convolution and Pooling: Translation Equivariance

Conv or Pool

Translate

H x W x C H’ x W’ x C’

Conv or Pool

Translate
Conv(Translate(X)) 

= Translate(Conv(X))

Intuition: Features of images don’t depend on their location in the image
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Summary: Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer
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Next time: CNN Architectures
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Appendix (Slides from Previous Years)

109
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Today: Convolutional Networks

x h s

Fully-Connected Layer

Convolution Layer

Activation Function

Pooling Layer

We have 
already 

seen these

Today: Image-
specific 

operators
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32

56

56

(each filter has size 1x1x64, 
and performs a 64-

dimensional dot product)

113
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32

56

56

114

(each filter has size 1x1x64, 
and performs a 64-

dimensional dot product)
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Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV 
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

115

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

116
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The brain/neuron view of CONV Layer

32

32

3

32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and this part of the image
(i.e. 5*5*3 = 75-dimensional dot product)

It’s just a neuron with local 
connectivity... 

117
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The brain/neuron view of CONV Layer

32

32

3

28

28

E.g. with 5 filters,
CONV layer consists of neurons 
arranged in a 3D grid
(28x28x5)

There will be 5 different neurons 
all looking at the same region in 
the input volume

5

118



Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

3072
1

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input (a 
3072-dimensional dot product)

1
10

Each neuron 
looks at the full 
input volume 

119
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Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently

121
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

123

• No learnable parameters
• Introduces spatial invariance
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Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.

- But recent advances such as ResNet/GoogLeNet have 
challenged this paradigm

125
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Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks

126
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http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[ConvNetJS demo: training on CIFAR-10]

127

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

Deep Learning Overview
1. Encode your problem as y = f(x) 

where x and y are grids of numbers. 
Get a dataset of (x, y) pairs.

128

Scores for 
each class

Image Classification

Image: x Scores: y

[32 x 32 x 3] [10]
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Deep Learning Overview
1. Encode your problem as y = f(x) 

where x and y are grids of numbers. 
Get a dataset of (x, y) pairs.

2. Define a loss function L(ypred, ygt) 
that measures the correctness of 
predictions with a single number

129

Softmax Loss

s: vector of n scores
y: int in [0, n)

𝐿(𝑠, 𝑦) = − log
𝑒−𝑠𝑦

σ𝑖 𝑒
−𝑠𝑖

Scores for y should be +inf

Others should be -inf

s
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Deep Learning Overview
1. Encode your problem as y = f(x) 

where x and y are grids of numbers. 
Get a dataset of (x, y) pairs.

2. Define a loss function L(ypred, ygt) 
that measures the correctness of 
predictions with a single number

3. Define a computational graph that 
predicts y from x using learnable 
weights w

130

Linear Classifiers

𝑓 𝑥, 𝑤, 𝑏 = 𝑊𝑥 + 𝑏



Stanford CS231n 10th Anniversary Lecture 5 - April 15, 2025

Deep Learning Overview
1. Encode your problem as y = f(x) 

where x and y are grids of numbers. 
Get a dataset of (x, y) pairs.

2. Define a loss function L(ypred, ygt) 
that measures the correctness of 
predictions with a single number

3. Define a computational graph that 
predicts y from x using learnable 
weights w
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Linear Classifiers

𝑓 𝑥, 𝑤, 𝑏 = 𝑊𝑥 + 𝑏
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Deep Learning Overview
1. Encode your problem as y = f(x) 

where x and y are grids of numbers. 
Get a dataset of (x, y) pairs.

2. Define a loss function L(ypred, ygt) 
that measures the correctness of 
predictions with a single number

3. Define a computational graph that 
predicts y from x using learnable 
weights w

4. Compute gradients dL/dw using 
backpropagation

5. Find w that minimizes the loss using 
optimization algorithms

132
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Frank Rosenblatt, ~1957: Perceptron

The Mark I Perceptron machine was the first 
implementation of the perceptron algorithm. 

The machine was connected to a camera that used 20×20 
cadmium sulfide photocells to produce a 400-pixel image. 

recognized 
letters of the alphabet

update rule:

A bit of history...

This image by Rocky Acosta is licensed under CC-BY 3.0
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https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/
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Widrow and Hoff, ~1960: Adaline/Madaline

A bit of history...

These figures are reproduced from Widrow 1960, Stanford Electronics Laboratories Technical 
Report with permission from Stanford University Special Collections.

134

http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf
http://www.oac.cdlib.org/findaid/ark:/13030/c8rv0qw9/entire_text/
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Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...

Illustration of Rumelhart et al., 1986 by Lane McIntosh, 
copyright CS231n 2017
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[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017
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First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks 
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, copyright 
CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Imagenet classification with deep convolutional 
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012
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A bit of history:

Hubel & Wiesel,
1959
RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...
Cat image by CNX OpenStax is licensed 

under CC BY 4.0; changes made

138

https://commons.wikimedia.org/wiki/File:Figure_35_03_05.jpg
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A bit of history

Topographical mapping in the cortex:
nearby cells in cortex represent 
nearby regions in the visual field

Retinotopy images courtesy of Jesse Gomez in the 
Stanford Vision & Perception Neuroscience Lab. 

Human brain

Visual
cortex
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Hierarchical organization

Illustration of hierarchical organization in early visual 
pathways by Lane McIntosh, copyright CS231n 2017
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A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling

141
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