Lecture 5: Image Classification with CNNs

Stanford CS231n 10th Anniversary

Lecture 5 - 1

Administrative: Assignment 1

Assignment 1 Due **Wednesday 4/23** at 11:59pm

Lecture 5 - 2

April 15, 2025

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Administrative: Project Proposal

Due Fri 4/25

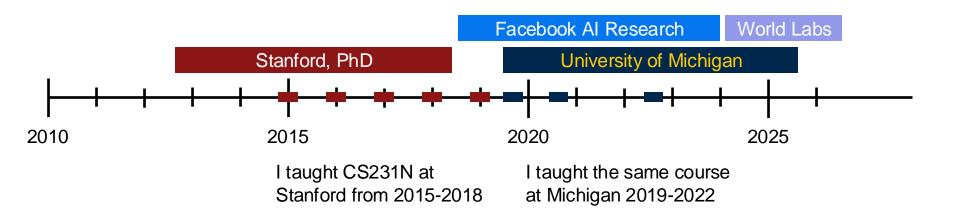
TA expertise is posted on the webpage.

http://cs231n.stanford.edu/office_hours.html

Stanford CS231n 10th Anniversary

Lecture 5 - 3

Hi I'm Justin



Stanford CS231n 10th Anniversary

Lecture 5 - 4

CS231n: Deep Learning for Computer Vision

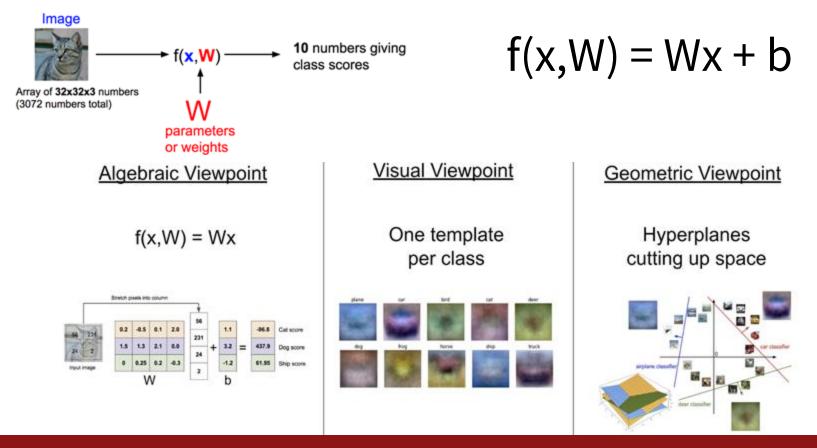
• Deep Learning Basics (Lecture 2 – 4)

- Perceiving and Understanding the Visual World (Lecture 5 12)
- Generative and Interactive Visual Intelligence (Lecture 13 16)
- Human-Centered Applications and Implications (Lecture 17 18)

Lecture 5 - 5

<u>April 15, 2025</u>

Recap: Image Classification with Linear Classifier



Stanford CS231n 10th Anniversary

Lecture 5 - 6

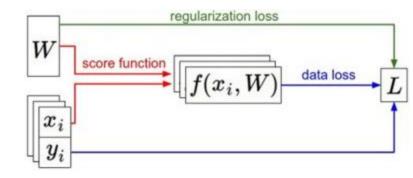
Recap: Loss Function

- We have some dataset of (x,y)
- We have a score function:
- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 Softmax

$$s = f(x; W) = Wx$$

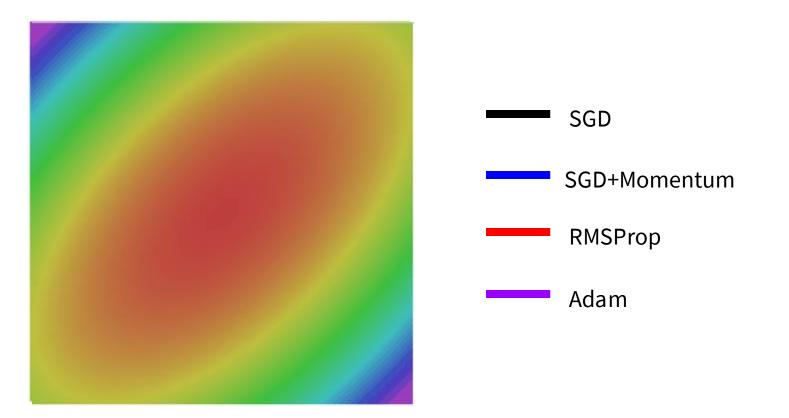
Lecture 5 - 7



April 15, 2025

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + R(W)$$
 Full loss

Recap: Optimization



Stanford CS231n 10th Anniversary

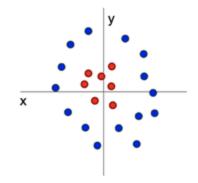
Lecture 5 - 8

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

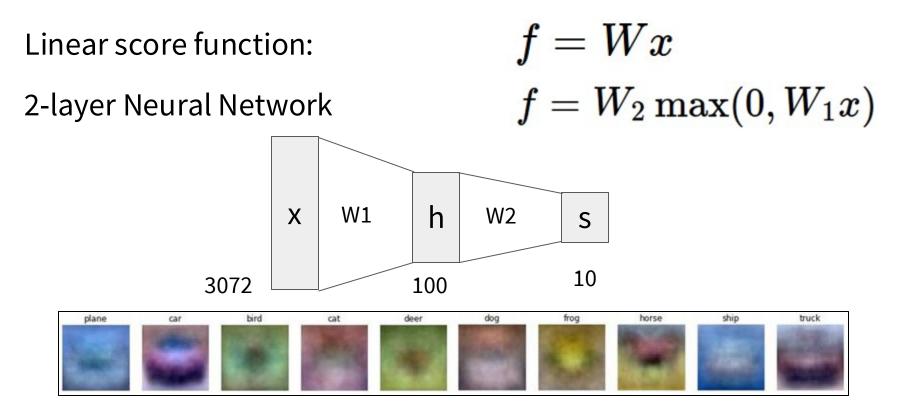


Linear classifiers can only draw linear decision boundaries

Stanford CS231n 10th Anniversary

Lecture 5 - 9

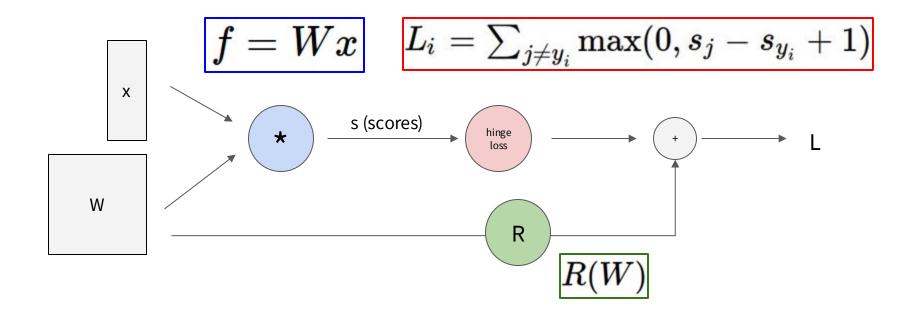
Last time: Neural Networks



Stanford CS231n 10th Anniversary

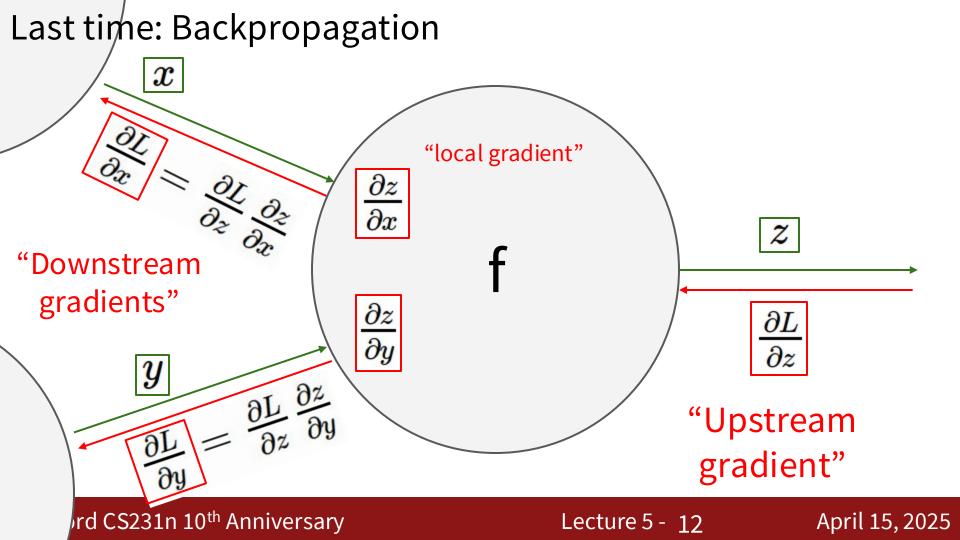
Lecture 5 - 10 A

Last time: Computation Graph

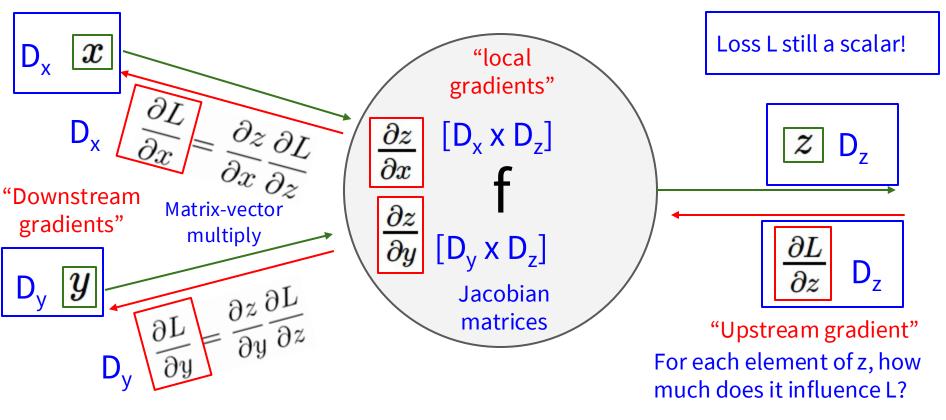


Stanford CS231n 10th Anniversary

Lecture 5 - 11

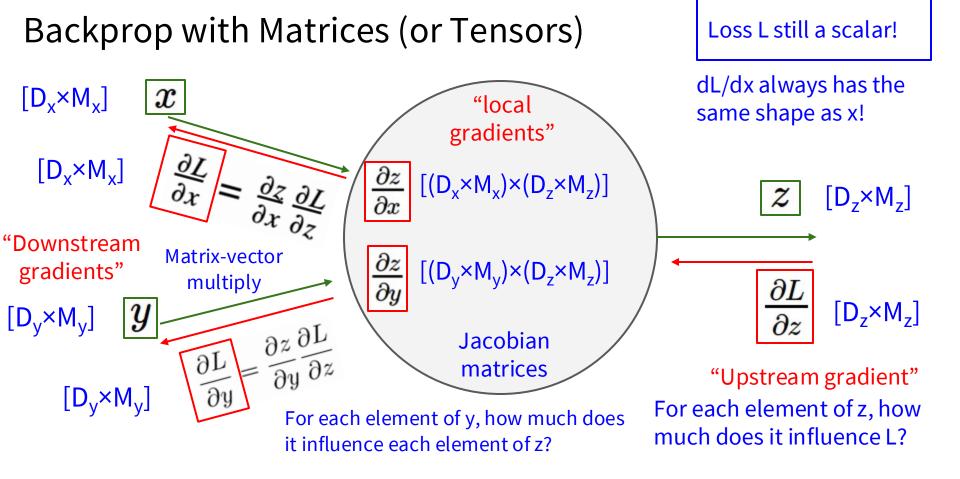


Backprop with Vectors



Stanford CS231n 10th Anniversary

Lecture 5 - 13



Stanford CS231n 10th Anniversary

Lecture 5 - <u>1</u>4

CS231n: Deep Learning for Computer Vision

• Deep Learning Basics (Lecture 2 – 4)

- Perceiving and Understanding the Visual World (Lecture 5 12)
- Generative and Interactive Visual Intelligence (Lecture 13 16)
- Human-Centered Applications and Implications (Lecture 17 18)

Lecture 5 - 15

<u>April 15, 2025</u>

CS231n: Deep Learning for Computer Vision

- Deep Learning Basics (Lecture 2 4)
- Perceiving and Understanding the Visual World (Lecture 5 12)
- Generative and Interactive Visual Intelligence (Lecture 13 16)
- Human-Centered Applications and Implications (Lecture 17 18)

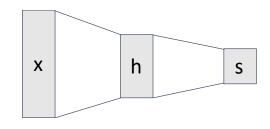
Lecture 5 - 16

April 15, 2025

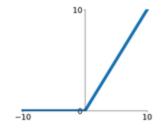
Today: Convolutional Networks

Fully-Connected Layer

We have already seen these



Activation Function



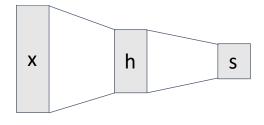
Stanford CS231n 10th Anniversary

Lecture 5 - 17

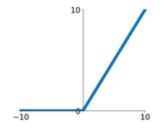
Today: Convolutional Networks

Fully-Connected Layer

We have already seen these

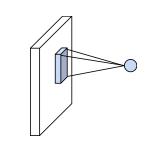


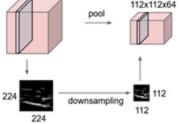
Activation Function



Convolution Layer

Today: Imagespecific operators





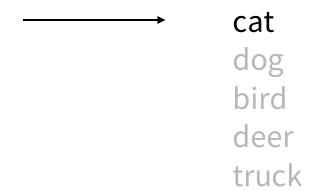
Stanford CS231n 10th Anniversary

Lecture 5 - 18

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

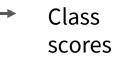
(assume given a set of labels) {dog, cat, truck, plane, ...}



Stanford CS231n 10th Anniversary

Lecture 5 - 19

Pixel space



f(x) = Wx

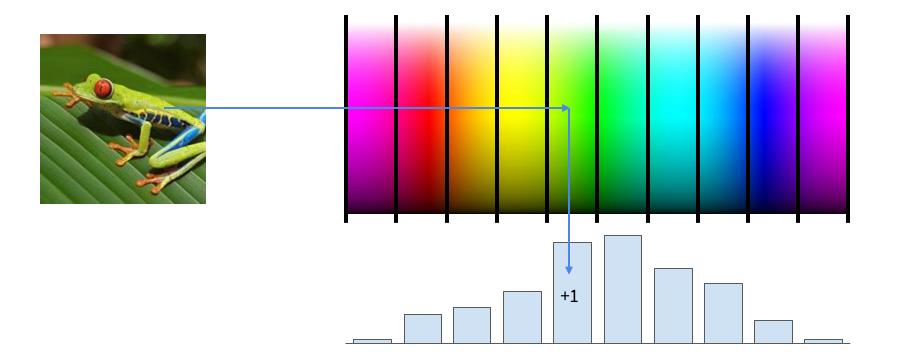
Stanford CS231n 10th Anniversary

Lecture 5 - 20

Image features

Stanford CS231n 10th Anniversary

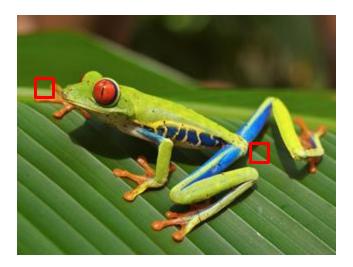
Example: Color Histogram



Stanford CS231n 10th Anniversary

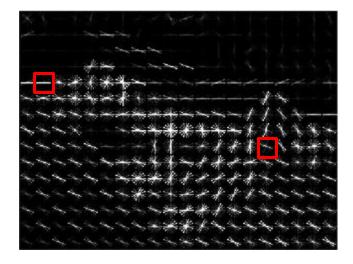
Lecture 5 - 22

Example: Histogram of Oriented Gradients (HoG)



Divide image into 8x8 pixel regions Within each region quantize edge direction into 9 bins

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



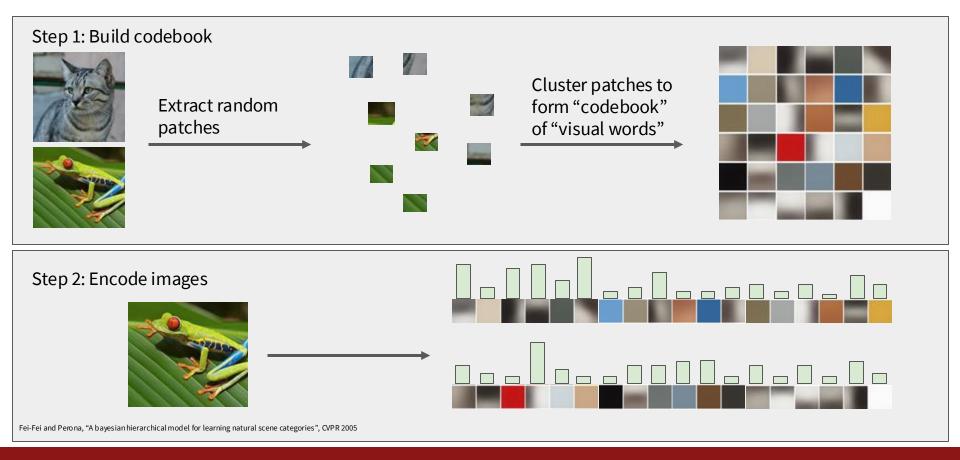
Example: 320x240 image gets divided into 40x30 bins; in each bin there are 9 numbers so feature vector has 30*40*9 = 10,800 numbers

April 15, 2025

Stanford CS231n 10th Anniversary

Lecture 5 - 23

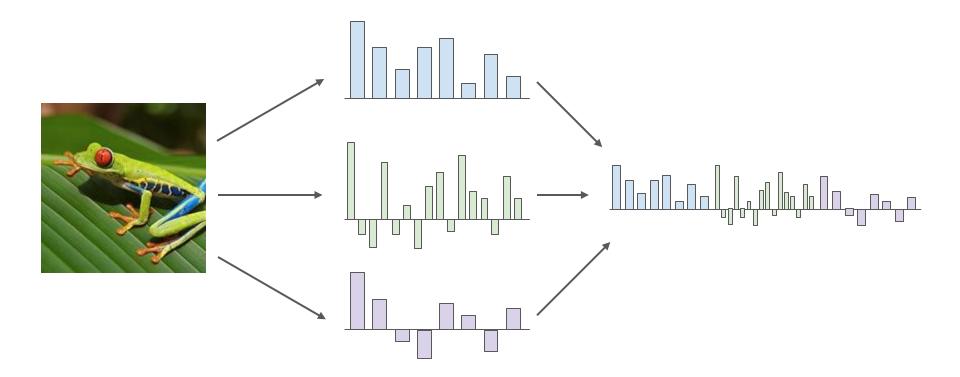
Example: Bag of Words



Stanford CS231n 10th Anniversary

Lecture 5 - 24

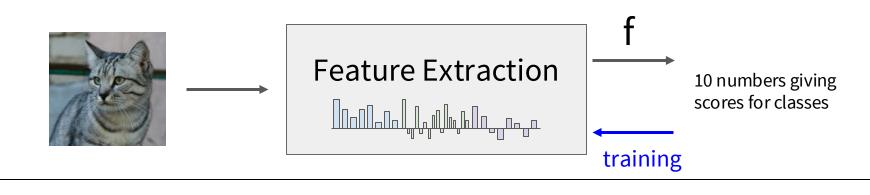
Image Features

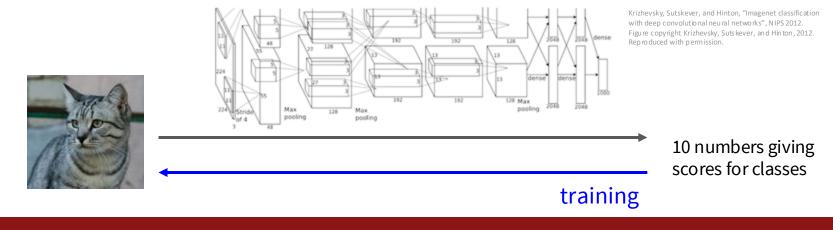


Stanford CS231n 10th Anniversary

Lecture 5 - 25

Image features vs. ConvNets

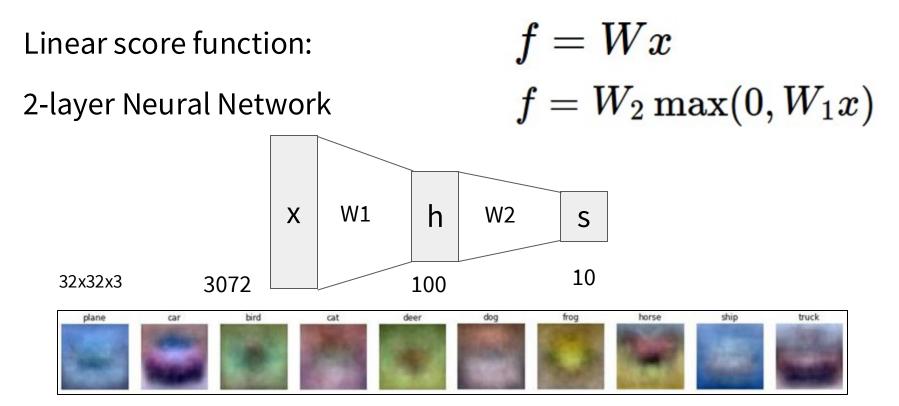




Lecture 5 - 26

April 15, 2025

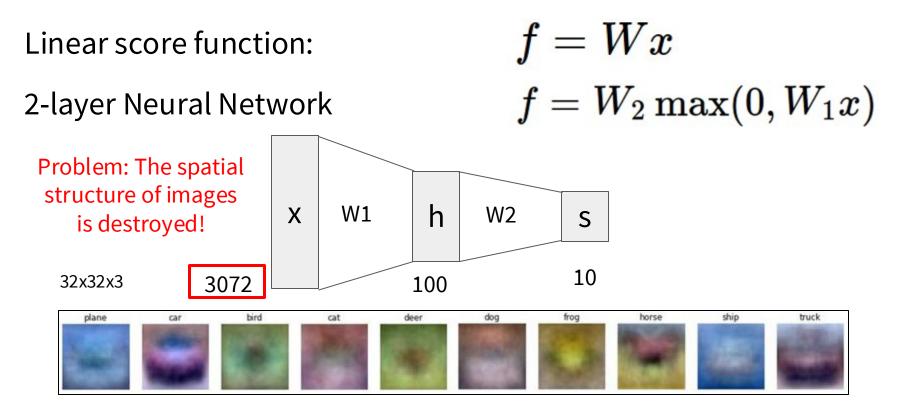
Last Time: Neural Networks



Stanford CS231n 10th Anniversary

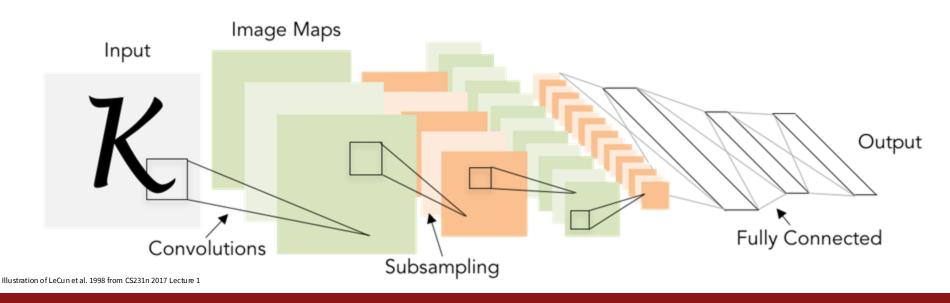
Lecture 5 - 27 A

Last Time: Neural Networks



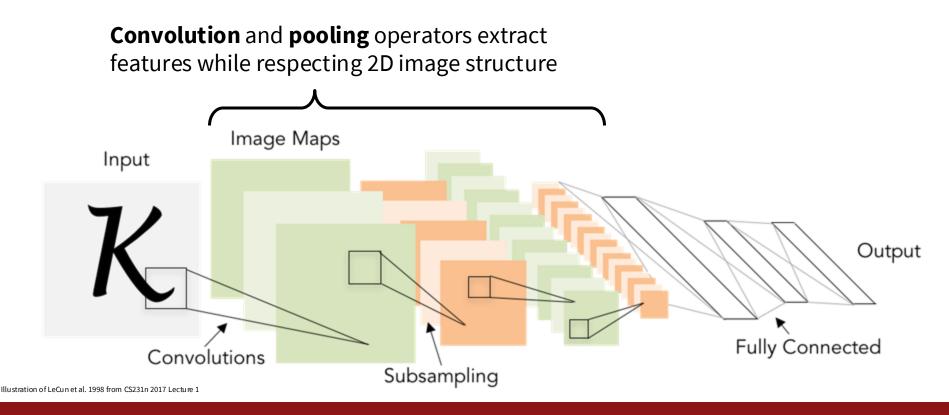
Stanford CS231n 10th Anniversary

Lecture 5 - 28



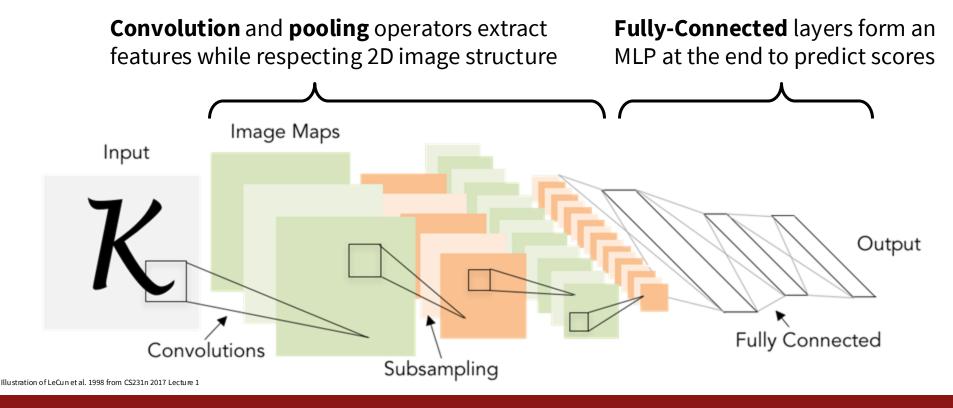
Lecture 5 - 29

April 15, 2025



Stanford CS231n 10th Anniversary

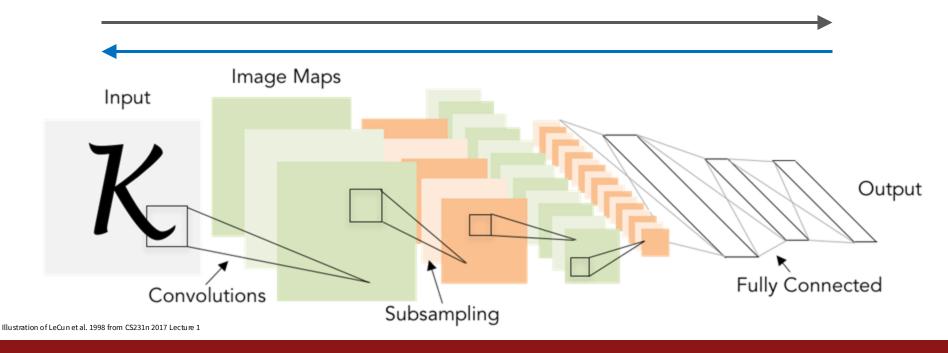
Lecture 5 - 30



Lecture 5 - 31

April 15, 2025

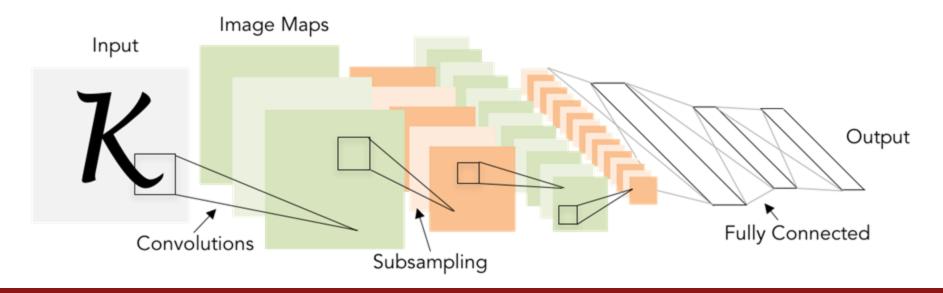
Trained end-to-end with backprop + gradient descent



Lecture 5 - 32

April 15, 2025

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]



Stanford CS231n 10th Anniversary

Lecture 5 - 33

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

April 15, 2025

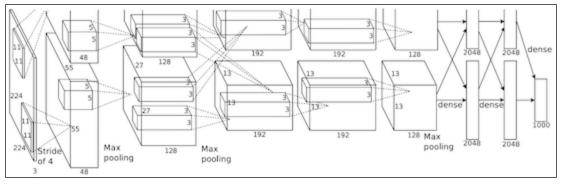
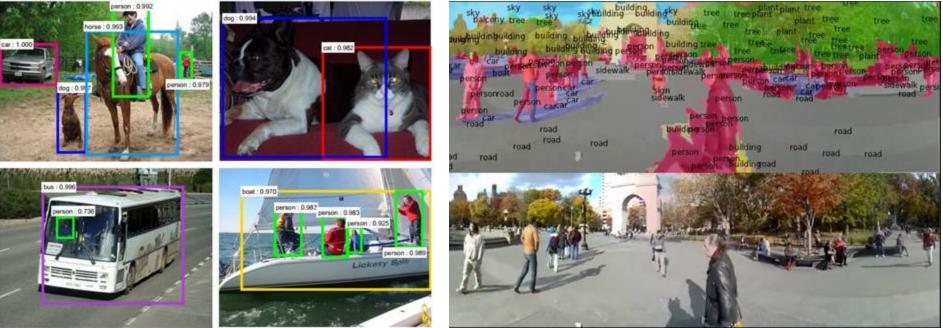


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Lecture 5 - 34

"AlexNet"

~2012 – 2020: ConvNets dominate all vision tasks Detection Detection



Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Stanford CS231n 10th Anniversary

Lecture 5 - 35

~2012 – 2020: ConvNets dominate all vision tasks Image Captioning

A white teddy bear sitting in the grass

A man riding a wave on top of a surfboard

A man in a baseball uniform throwing a ball

A cat sitting on a suitcase on the floor

A woman is holding a cat in her hand

A woman standing on a beach

holding a surfboard

All images are CC0 Public domain: https://pixabay.com/en/luggage-antique-cat-1643010/ https://pixabay.com/en/luggage-antique-cat-1643010/ https://pixabay.com/en/luggage-antique-cat-1648716/ https://pixabay.com/en/woman-female-model-portrait-adult-983967/ https://pixabay.com/en/handstant-lake-meditation-496008/ https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using <u>Neuraltalk2</u>

[Vinyals et al., 2015] [Karpathy and Fei-Fei, 2015]

Stanford CS231n 10th Anniversary

Lecture 5 - 36

~2012 – 2020: ConvNets dominate all vision tasks

Text-to-Image Generation

Rombach et al, "High-Resolution Image Synthesis with Latent Diffusion Models", CVPR 2022

A zombie in the style of Picasso

An image of a half mouse half octopus A painting of a squirrel eating a burger A watercolor painting of a chair that looks like an octopus A shirt with the inscription: "I love generative models!"

Stanford CS231n 10th Anniversary

Lecture 5 - 37

~2012 – 2020: ConvNets dominate all vision tasks

CS231n: Convolutional Neural Networks for Visual Recognition

This class used to be focused on ConvNets!

Stanford CS231n 10th Anniversary

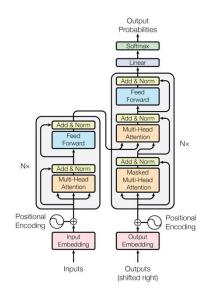
Lecture 5 - 38

2021 - Present: Transformers have taken over

April 15, 2025

Lecture 5 - 39

2017: Transformers for language tasks



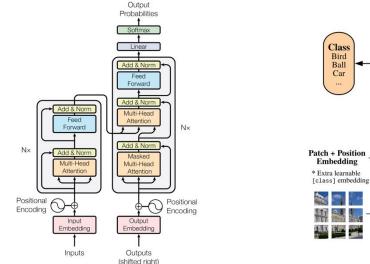
Vaswani et al, "Attention is all you need", NeurIPS 2017

Stanford CS231n 10th Anniversary

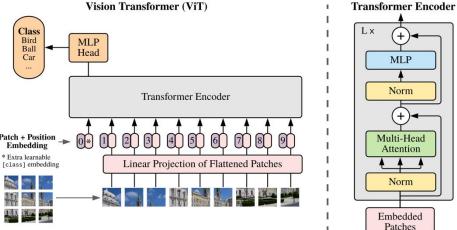
2021 - Present: Transformers have taken over

2017: Transformers for language tasks

2021: Transformers for vision tasks



Vaswani et al, "Attention is all you need", NeurIPS 2017



Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Stanford CS231n 10th Anniversary

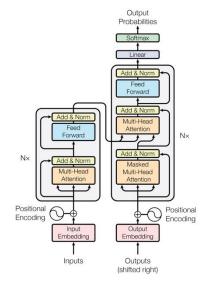
Lecture 5 - 40

2021 - Present: Transformers have taken over

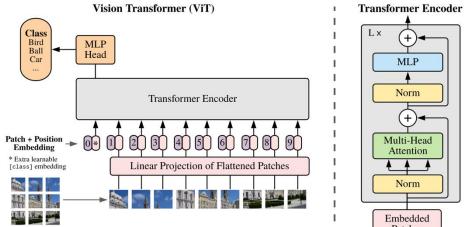
2017: Transformers for language tasks

2021: Transformers for vision tasks

Wait until Lecture 8!



Vaswani et al, "Attention is all you need", NeurIPS 2017



+ MLP Norm Multi-Head Attention Norm Embedded Patches

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Stanford CS231n 10th Anniversary

Lecture 5 - 41

<u>April 15, 2025</u>

Convolutional Neural Networks

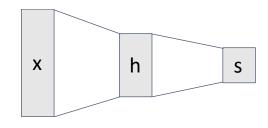
Stanford CS231n 10th Anniversary

Lecture 5 - 42

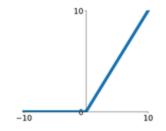
Today: Convolutional Networks

Fully-Connected Layer

We have already seen these



Activation Function



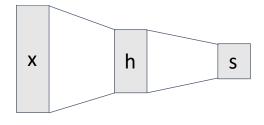
Stanford CS231n 10th Anniversary

Lecture 5 - 43

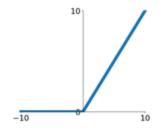
Today: Convolutional Networks

Fully-Connected Layer

We have already seen these

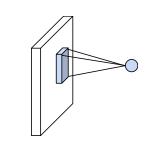


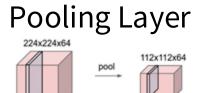
Activation Function

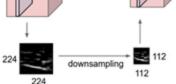


Convolution Layer

Today: Imagespecific operators







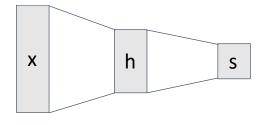
Stanford CS231n 10th Anniversary

Lecture 5 - 44

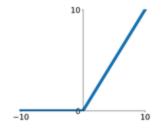
Today: Convolutional Networks

Fully-Connected Layer

We have already seen these

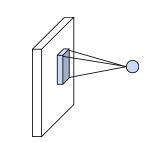


Activation Function

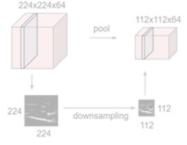


Convolution Layer

Today: Imagespecific operators



Pooling Layer

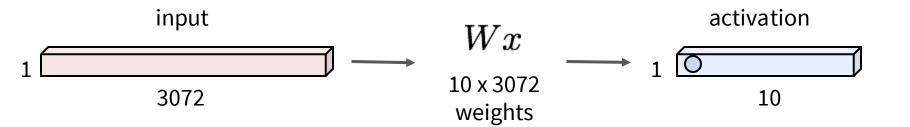


Stanford CS231n 10th Anniversary

Lecture 5 - 45

Recap: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

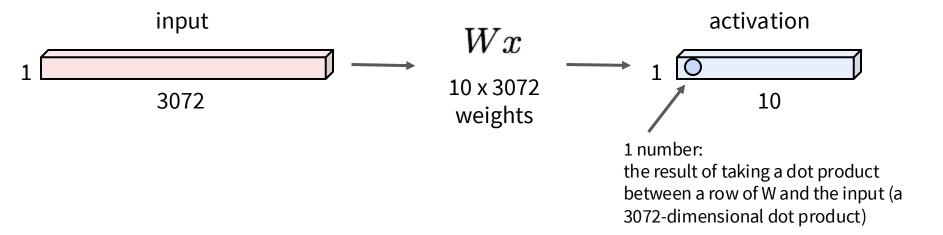


Stanford CS231n 10th Anniversary

Lecture 5 - 46

Fully Connected Layer

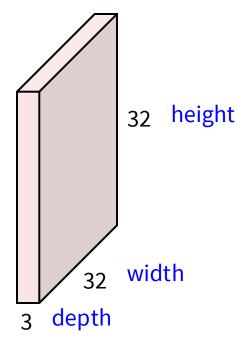
32x32x3 image -> stretch to 3072 x 1



Stanford CS231n 10th Anniversary

Lecture 5 - 47

32x32x3 image -> preserve spatial structure

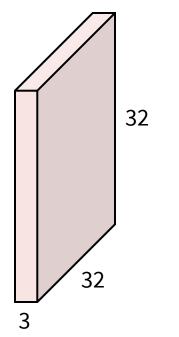


Stanford CS231n 10th Anniversary

Lecture 5 - 48

Convolution Layer

32x32x3 image



5x5x3 filter

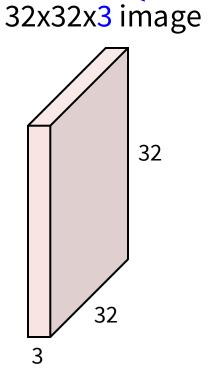
Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Lecture 5 - 49

April 15, 2025

Stanford CS231n 10th Anniversary

Filters always extend the full depth of the input volume



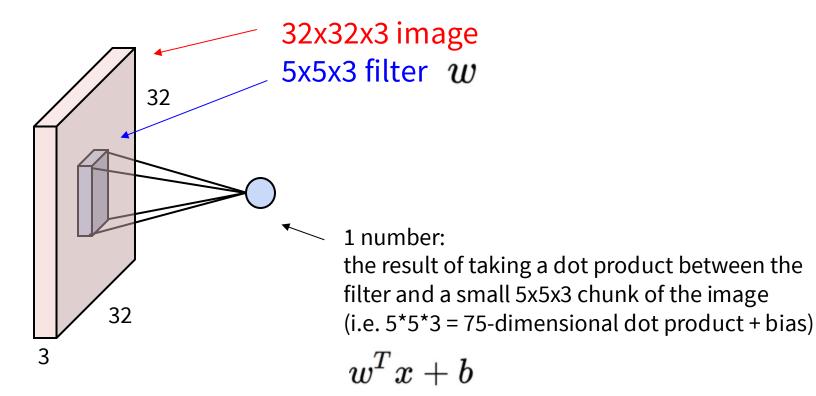
5x5x<mark>3</mark> filter

Ţ

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

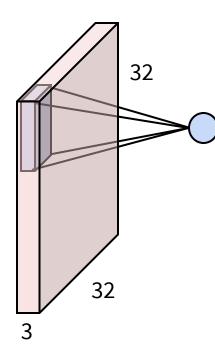
Stanford CS231n 10th Anniversary

Lecture 5 - 50



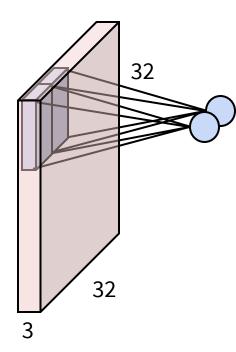
Stanford CS231n 10th Anniversary

Lecture 5 - 51



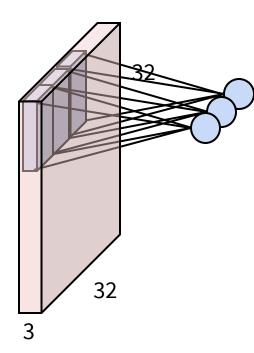
Stanford CS231n 10th Anniversary

Lecture 5 - 52



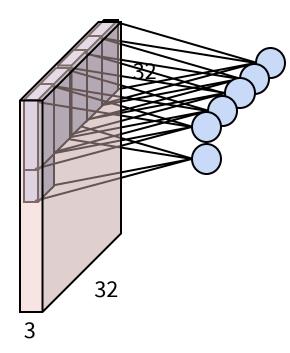
Stanford CS231n 10th Anniversary

Lecture 5 - 53



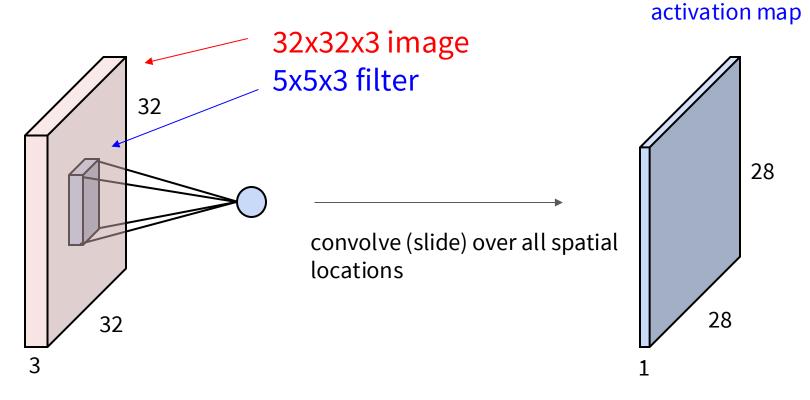
Stanford CS231n 10th Anniversary

Lecture 5 - 54



Stanford CS231n 10th Anniversary

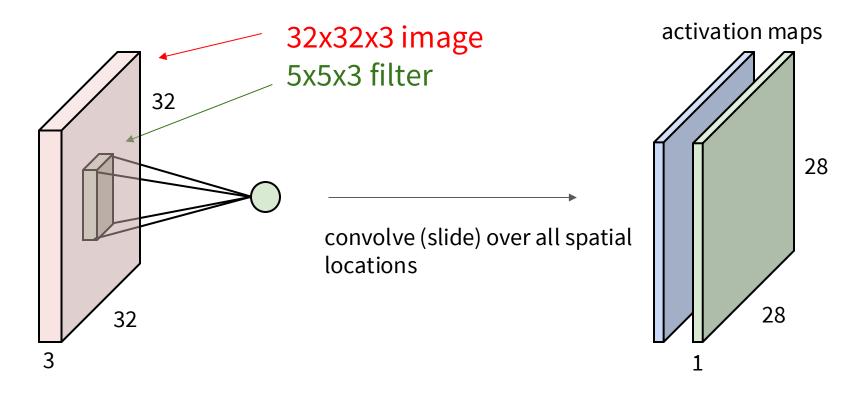
Lecture 5 - 55



Stanford CS231n 10th Anniversary

Lecture 5 - 56

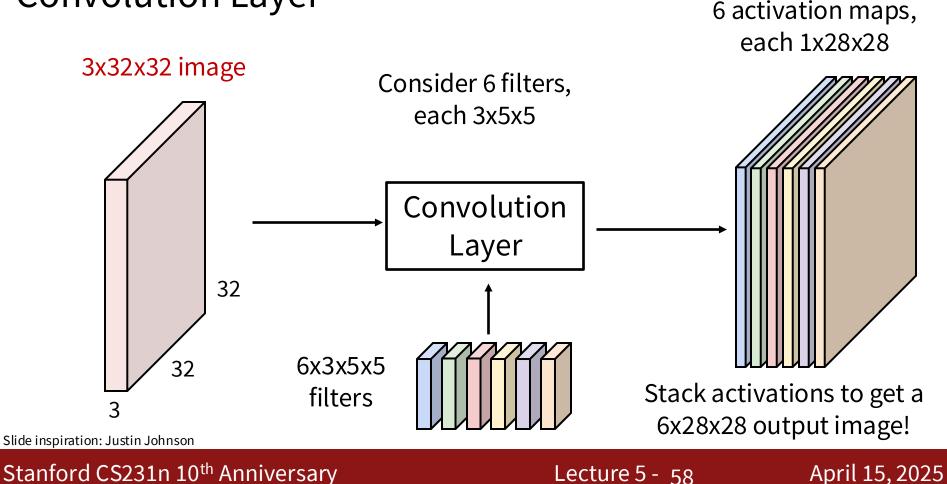
consider a second, green filter



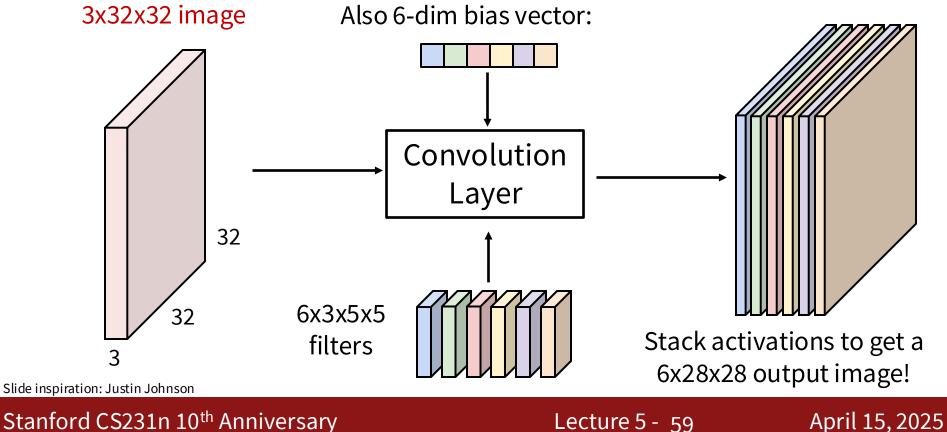
Stanford CS231n 10th Anniversary

Lecture 5 - 57

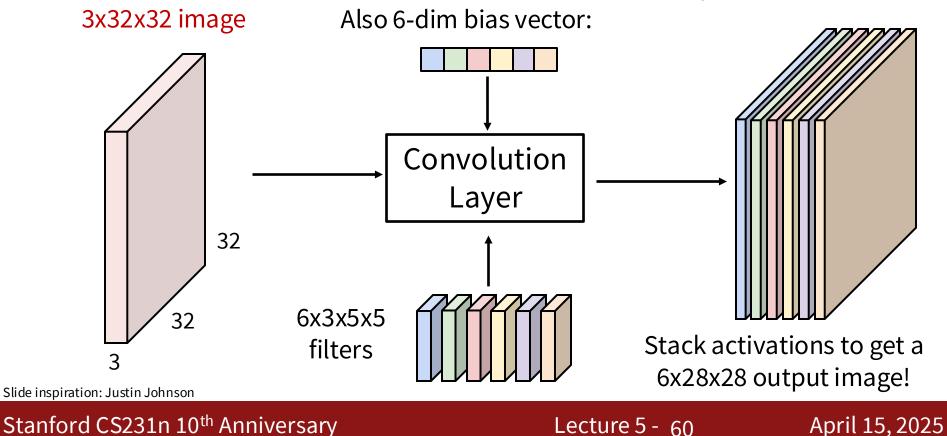
Convolution Layer

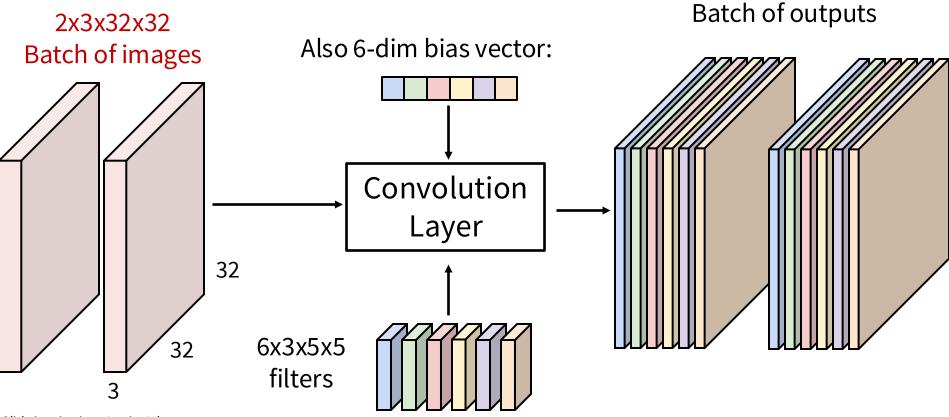


6 activation maps, each 1x28x28



28x28 grid, at each point a 6-dim vector



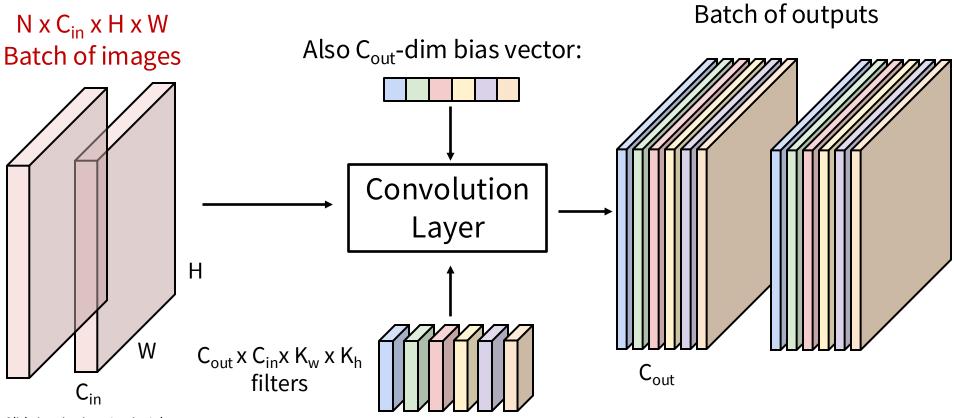


Slide inspiration: Justin Johnson

Stanford CS231n 10th Anniversary

Lecture 5 - 61

2x6x28x28



Slide inspiration: Justin Johnson

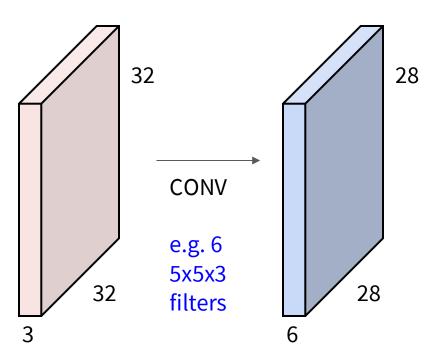
Stanford CS231n 10th Anniversary

Lecture 5 - 62

April 15, 2025

N x C_{out} x H' x W'

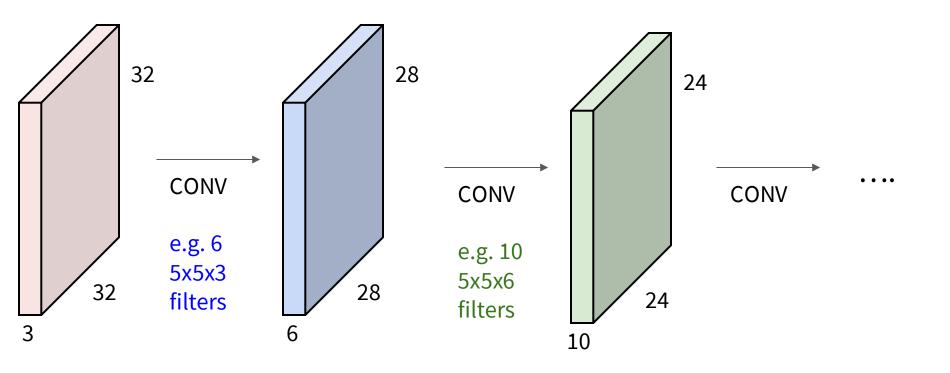
A ConvNet is a neural network with Conv layers



Stanford CS231n 10th Anniversary

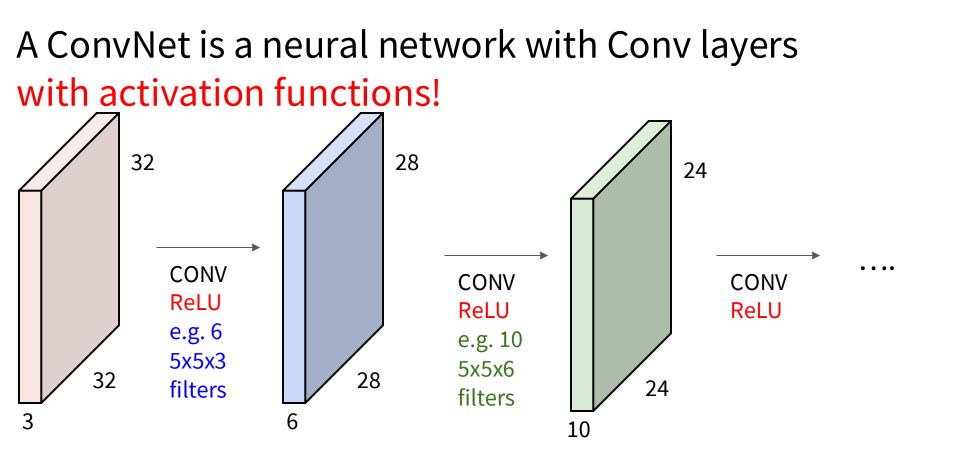
Lecture 5 - 63

A ConvNet is a neural network with Conv layers



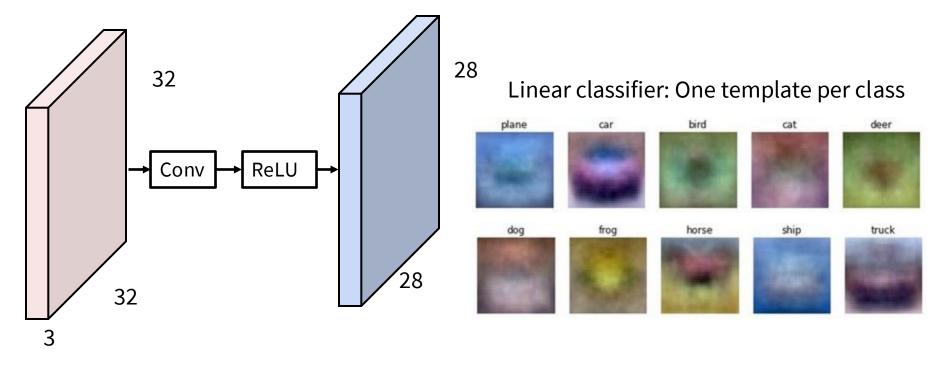
Stanford CS231n 10th Anniversary

Lecture 5 - 64



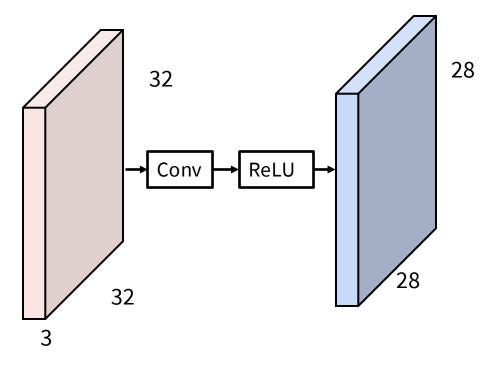
Stanford CS231n 10th Anniversary

Lecture 5 - 65



Stanford CS231n 10th Anniversary

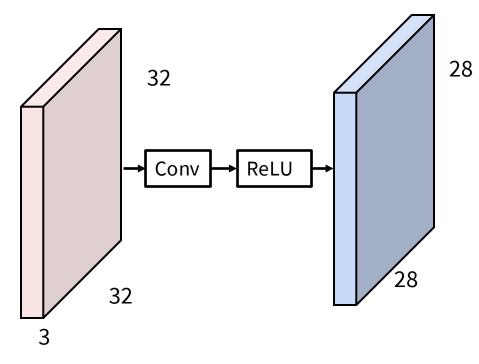
Lecture 5 - 66



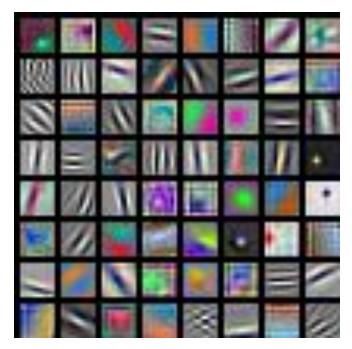
MLP: Bank of whole-image templates

Stanford CS231n 10th Anniversary

Lecture 5 - 67



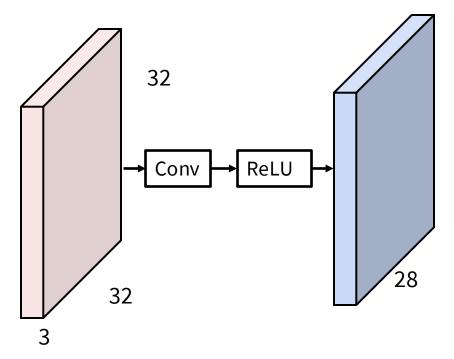
First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)



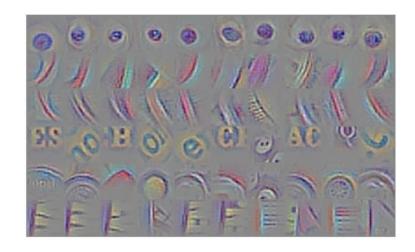
AlexNet: 64 filters, each 3x11x11

Stanford CS231n 10th Anniversary

Lecture 5 - 68



Deeper conv layers: Harder to visualize Tend to learn larger structures e.g. eyes, letters



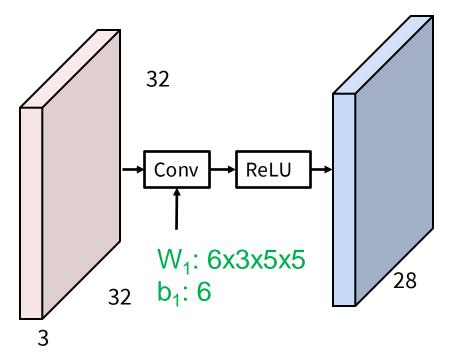
6th layer conv layer from an ImageNet model

Visualization from [Springenberg et al, ICLR 2015]

Stanford CS231n 10th Anniversary

Lecture 5 - 69

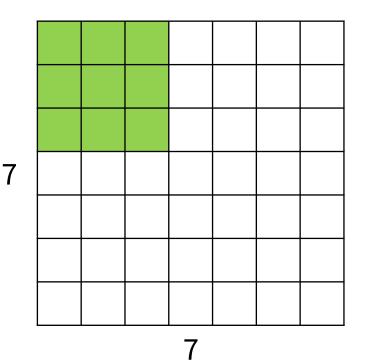
Convolution: Spatial Dimensions



Stanford CS231n 10th Anniversary

Lecture 5 - 70

Convolution: Spatial Dimensions

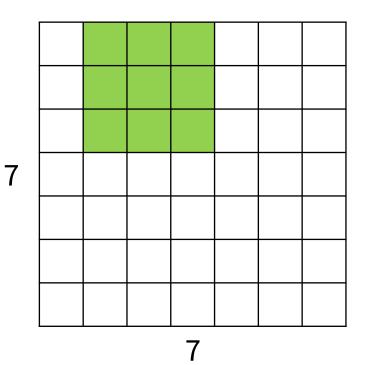


Input: 7x7 Filter: 3x3

Stanford CS231n 10th Anniversary

Lecture 5 - 71

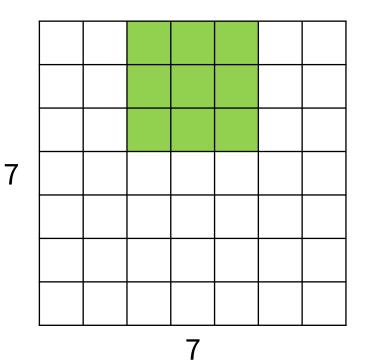
Convolution: Spatial Dimensions



Input: 7x7 Filter: 3x3

Stanford CS231n 10th Anniversary

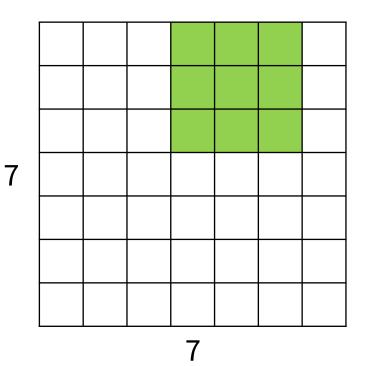
Lecture 5 - 72



Input: 7x7 Filter: 3x3

Stanford CS231n 10th Anniversary

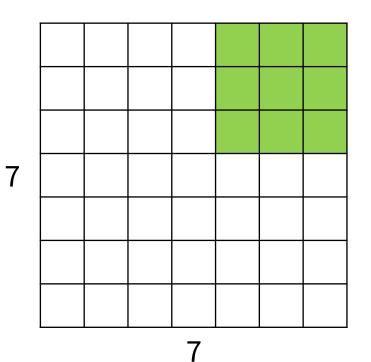
Lecture 5 - 73



Input: 7x7 Filter: 3x3

Stanford CS231n 10th Anniversary

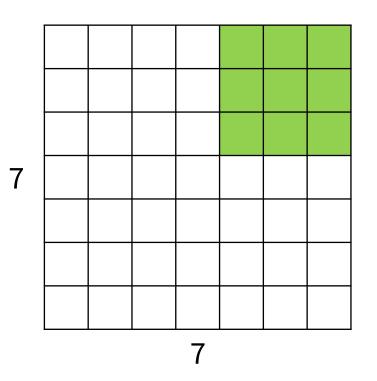
Lecture 5 - 74



Input: 7x7 Filter: 3x3 Output: 5x5

Stanford CS231n 10th Anniversary

Lecture 5 - 75

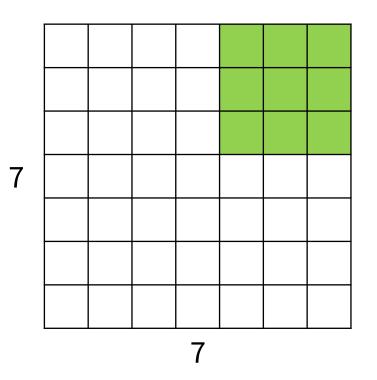


Input: 7x7 Filter: 3x3 Output: 5x5

In general Input: W Filter: K Output: W – K + 1

Stanford CS231n 10th Anniversary

Lecture 5 - 76



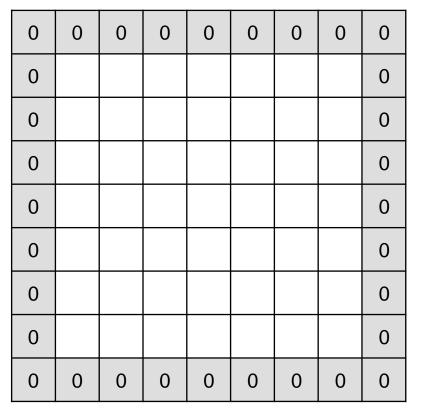
Input: 7x7 Filter: 3x3 Output: 5x5

<u>Problem</u>: Feature maps shrink with each layer!

In general Input: W Filter: K Output: W – K + 1

Stanford CS231n 10th Anniversary

Lecture 5 - 77



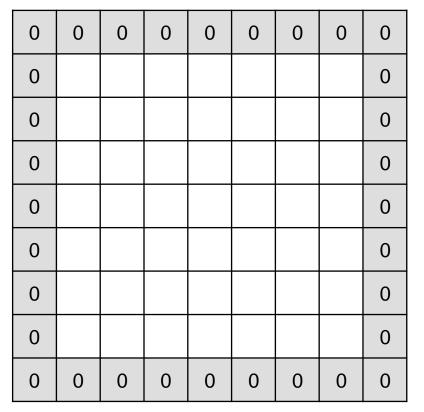
Input: 7x7 Filter: 3x3 Output: 5x5 <u>Problem</u>: Feature maps shrink with each layer!

April 15, 2025

Solution: AddIn generalpadding aroundInput: Wthe input beforeFilter: Ksliding the filterPadding: POutput: W – K + 1 + 2P

Stanford CS231n 10th Anniversary

Lecture 5 - 78



Input: 7x7 Filter: 3x3 Output: 5x5

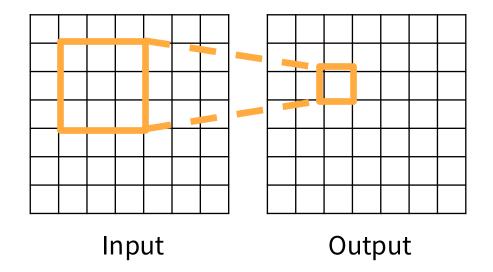
Common setting:In generalP = (K - 1) / 2Input: WMeans output hasFilter: Ksame size as inputPadding: POutput: W - K + 1 + 2P

April 15, 2025

Stanford CS231n 10th Anniversary

Lecture 5 - 79

For convolution with **kernel size K**, each element in the output depends on a K x K receptive field in the input

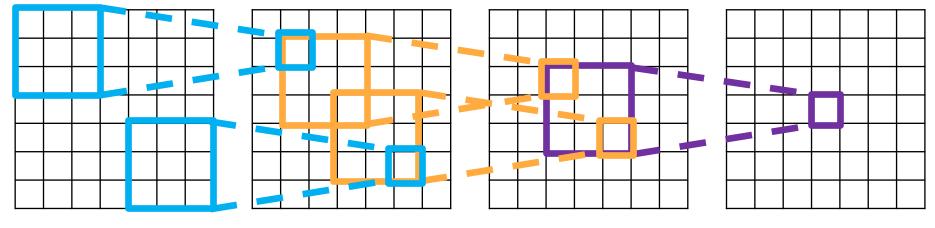


Slide inspiration: Justin Johnson

Stanford CS231n 10th Anniversary

Lecture 5 - 80

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)



Input

Output

Be careful – "receptive field in the input" vs. "receptive field in the previous layer"

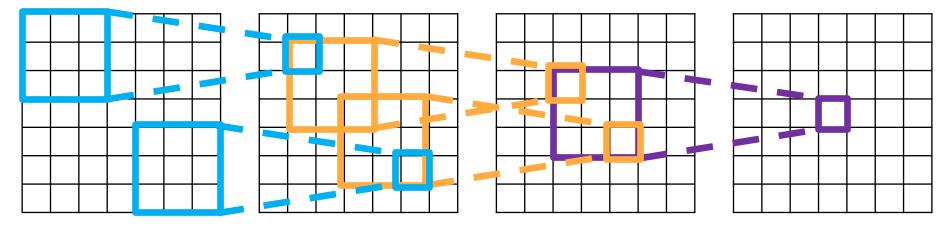
Lecture 5 - 81

Slide inspiration: Justin Johnson

April 15, 2025

Stanford CS231n 10th Anniversary

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)



Lecture 5 - 82

Input Problem: For large images we need many layers for each output to "see" the whole image image

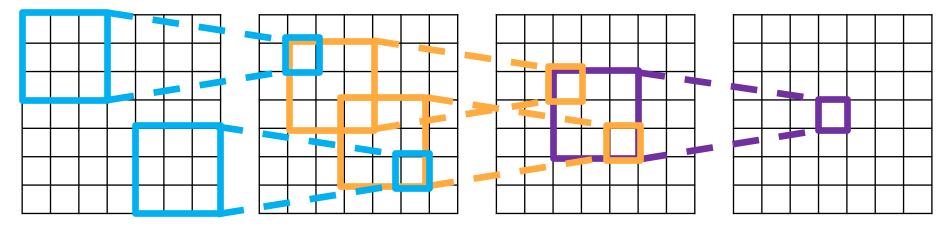
Output

Slide inspiration: Justin Johnson

April 15, 2025

Stanford CS231n 10th Anniversary

Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)



Input Problem: For large images we need many layers for each output to "see" the whole image image

Solution: Downsample inside the network

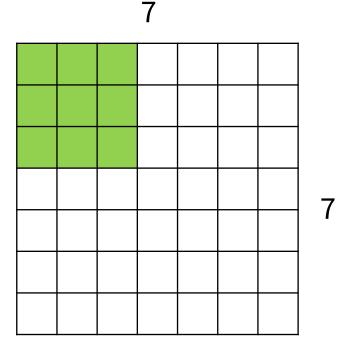
Slide inspiration: Justin Johnson

April 15, 2025

Output

Stanford CS231n 10th Anniversary

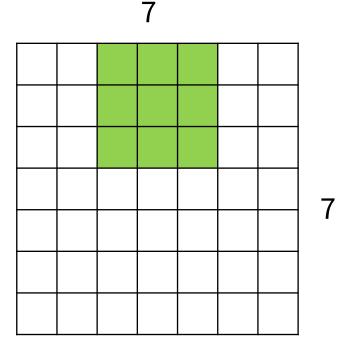
Lecture 5 - 83



Input: 7x7 Filter: 3x3 Stride: 2

Stanford CS231n 10th Anniversary

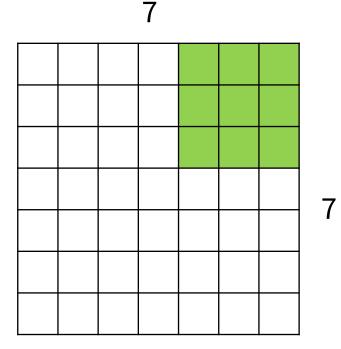
Lecture 5 - 84



Input: 7x7 Filter: 3x3 Stride: 2

Stanford CS231n 10th Anniversary

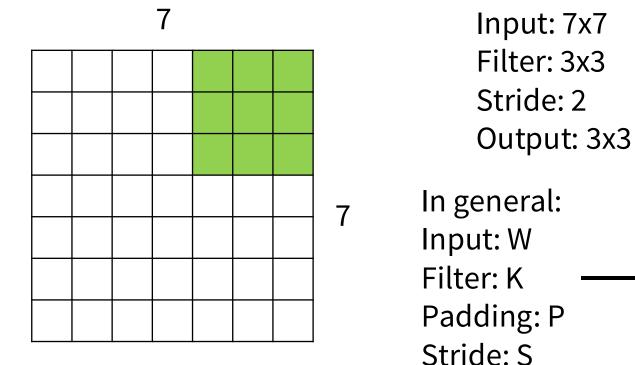
Lecture 5 - 85



Input: 7x7 Filter: 3x3 Stride: 2 Output: 3x3

Stanford CS231n 10th Ann<u>iversary</u>

Lecture 5 - 86



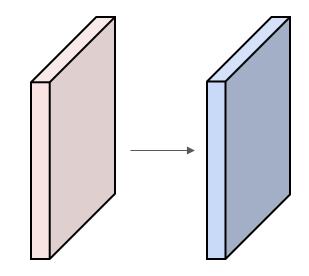
→ Output:
 (W – K + 2P) / S + 1

Stanford CS231n 10th Anniversary

Lecture 5 - 87

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

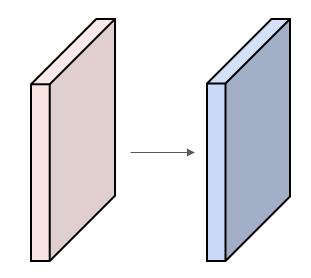


Stanford CS231n 10th Anniversary

Lecture 5 - 88

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: **10** x **32** x **32 32** = (**32**+2***2**-**5**)/**1**+1

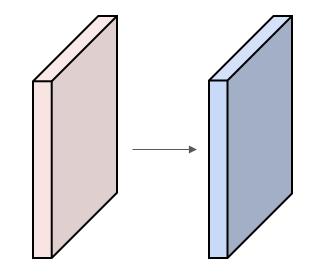


Stanford CS231n 10th Anniversary

Lecture 5 - 89

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: ?



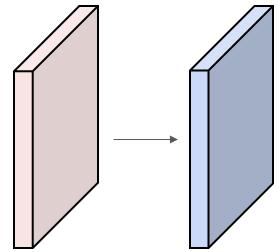
Lecture 5 - 90

April 15, 2025

Stanford CS231n 10th Anniversary

Input volume: 3 x 32 x 32 **10** 5x5 filters with stride 1, pad 2

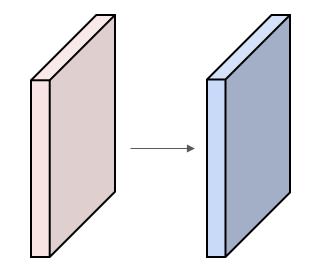
Output volume size: $10 \times 32 \times 32$ Number of learnable parameters: 760 Parameters per filter: 3*5*5 + 1 (for bias) = 76 10 filters, so total is $10 \times 76 = 760$



Lecture 5 - 91

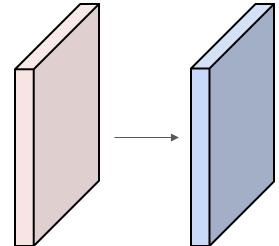
Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations?



Lecture 5 - 92

Input volume: **3** x 32 x 32 10 **5x5** filters with stride 1, pad 2



Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: 768,000 10*32*32 = 10,240 outputs Each output is the inner product of two 3x5x5 tensors (75 elems) Total = 75*10240 = 768K

Lecture 5 - 93

Convolution Summary

Input: C_{in} x H x W **Hyperparameters**:

- **Kernel size**: K_H x K_W
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$ Bias vector: C_{out} Output size: $C_{out} \times H' \times W'$ where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings: $K_H = K_W$ (Small square filters) P = (K - 1) / 2 ("Same" padding) $C_{in}, C_{out} = 32, 64, 128, 256$ (powers of 2) K = 3, P = 1, S = 1 (3x3 conv) K = 5, P = 2, S = 1 (5x5 conv) K = 1, P = 0, S = 1 (1x1 conv) K = 3, P = 1, S = 2 (Downsample by 2)

Stanford CS231n 10th Anniversary

Lecture 5 - 94

PyTorch Convolution Layer

CLASS torch.nn.Conv2d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *dilation=1*, *groups=1*, *bias=True*, *padding_mode='zeros'*, *device=None*, *dtype=None*) [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{
m in}, H, W)$ and output $(N, C_{
m out}, H_{
m out}, W_{
m out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

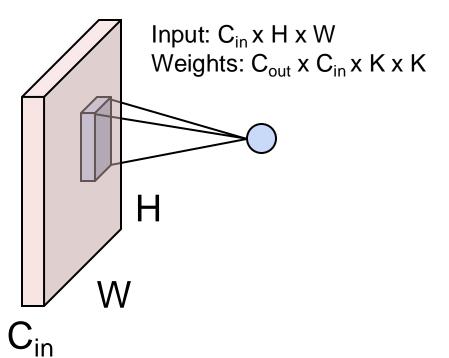
We didn't talk about groups or dilation...

Stanford CS231n 10th Anniversary

Lecture 5 - 95

Other Types of Convolution

So far: 2D Convolution

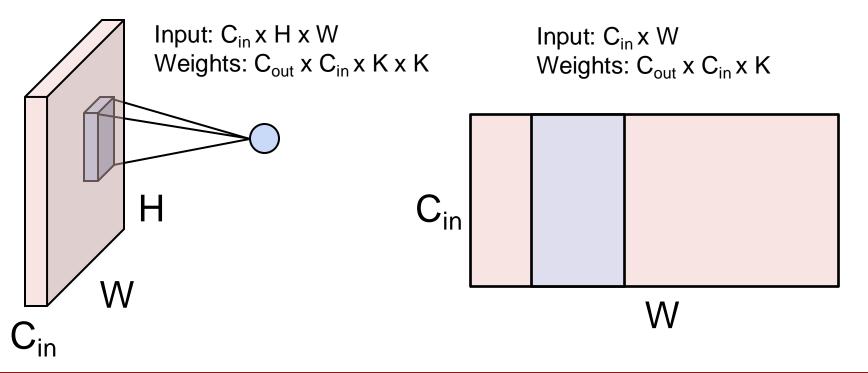


Stanford CS231n 10th Anniversary

Lecture 5 - 96

Other Types of Convolution

So far: 2D Convolution



Stanford CS231n 10th Anniversary

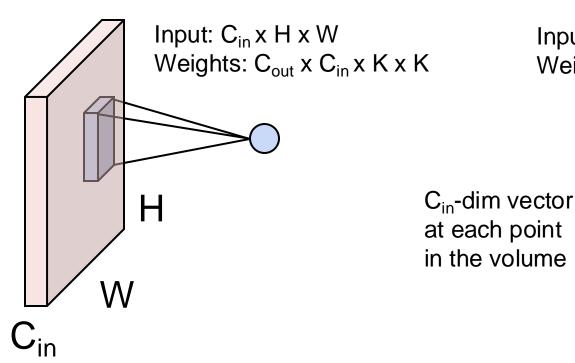
Lecture 5 - 97

April 15, 2025

1D Convolution

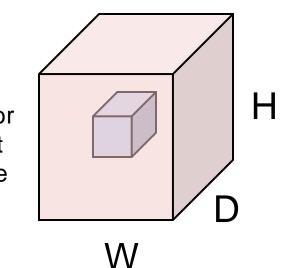
Other Types of Convolution

So far: 2D Convolution



3D Convolution

Input: $C_{in} x H x W x D$ Weights: $C_{out} x C_{in} x K x K x K$



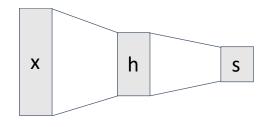
Stanford CS231n 10th Anniversary

Lecture 5 - 98

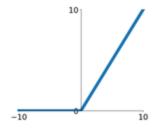
Convolutional Networks

Fully-Connected Layer

We have already seen these

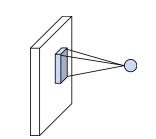


Activation Function

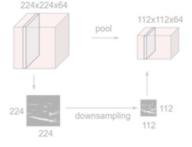


Convolution Layer

Today: Imagespecific operators



Pooling Layer



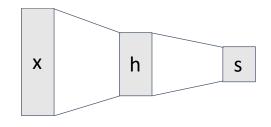
Stanford CS231n 10th Anniversary

Lecture 5 - 99

Convolutional Networks

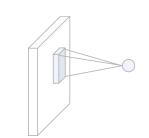
Fully-Connected Layer

We have already seen these

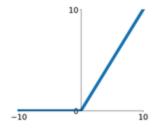


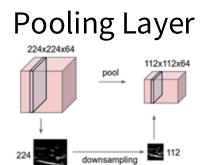
Convolution Layer

Today: Imagespecific operators



Activation Function



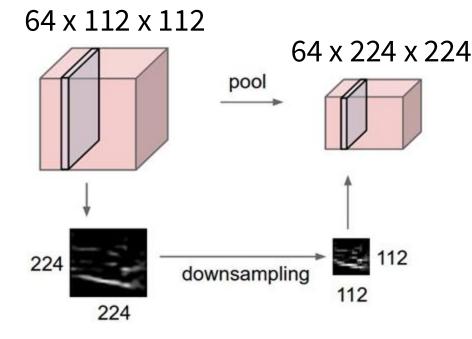


Stanford CS231n 10th Anniversary

Lecture 5 - 100

224

Pooling Layers: Another way to downsample



Given an input C x H x W, downsample each 1 x H x W plane

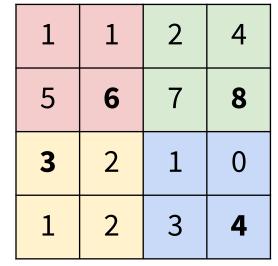
> **Hyperparameters**: Kernel Size Stride Pooling function

Stanford CS231n 10th Anniversary

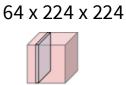
Lecture 5 - 101

Pooling Layers: Another way to downsample

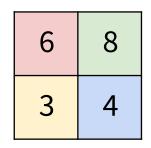
Single depth slice



У



Max pooling with 2x2 kernel size and stride 2



Gives **invariance** to small spatial shifts. No learnable parameters.

Stanford CS231n 10th Anniversary

Х

Lecture 5 - 102

Pooling Summary

Input: C x H x W **Hyperparameters**:

- Kernel size: K
- Stride: S
- **Pooling function**: max, avg **Output size**: C x H' x W' where:
- H' = (H K) / S + 1
- W' = (W K) / S + 1

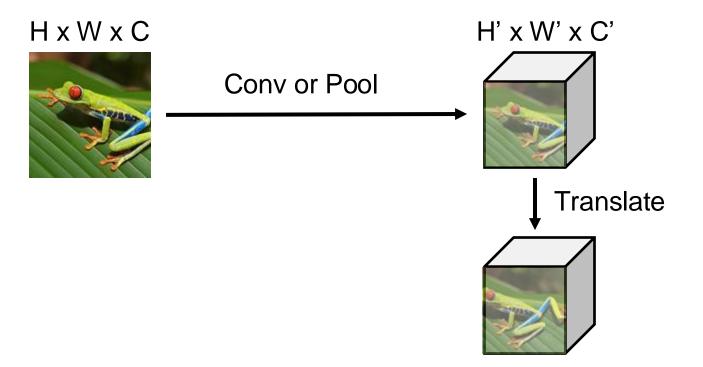
No learnable parameters

Common setting: max, K=2, S=2 => Gives 2x downsampling

Stanford CS231n 10th Anniversary

Lecture 5 - 103

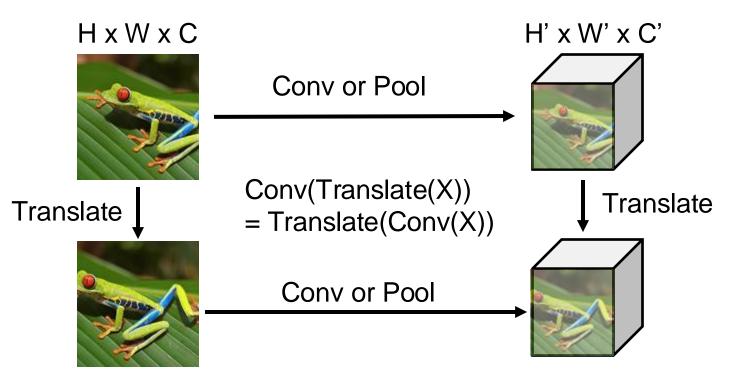
Convolution and Pooling: Translation Equivariance



Stanford CS231n 10th Anniversary

Lecture 5 - 104

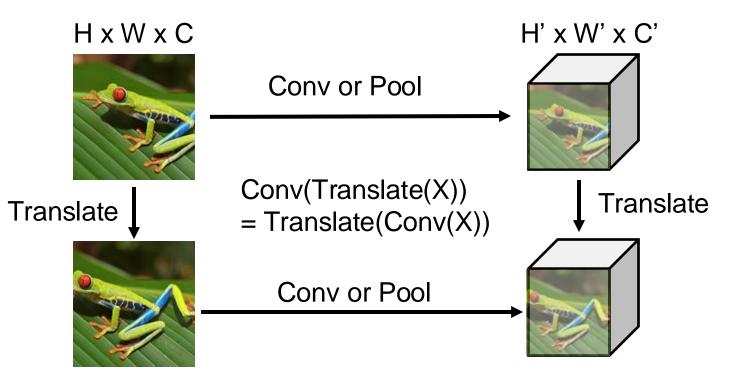
Convolution and Pooling: Translation Equivariance



Stanford CS231n 10th Anniversary

Lecture 5 - 105

Convolution and Pooling: Translation Equivariance



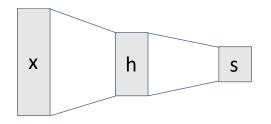
Intuition: Features of images don't depend on their location in the image

Stanford CS231n 10th Anniversary

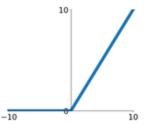
Lecture 5 - 106

Summary: Convolutional Networks

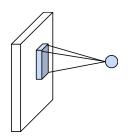
Fully-Connected Layer

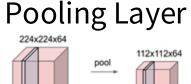


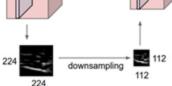
Activation Function



Convolution Layer



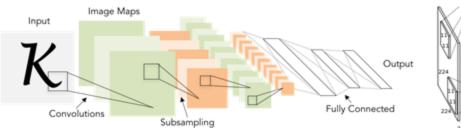


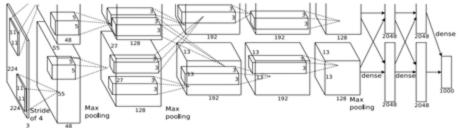


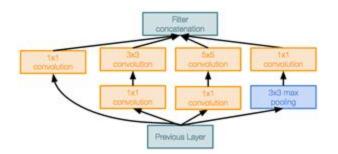
Stanford CS231n 10th Anniversary

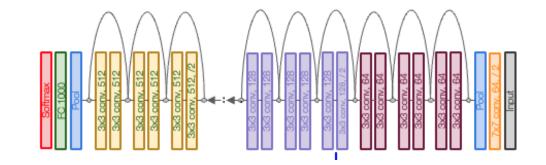
Lecture 5 - 107

Next time: CNN Architectures









Stanford CS231n 10th Anniversary

Lecture 5 - 108

Appendix (Slides from Previous Years)

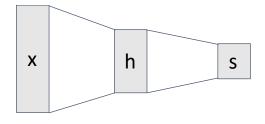
Stanford CS231n 10th Anniversary

Lecture 5 - 109

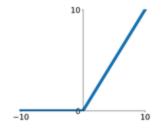
Today: Convolutional Networks

Fully-Connected Layer

We have already seen these

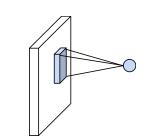


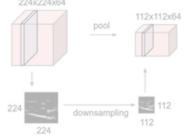
Activation Function



Convolution Layer

Today: Imagespecific operators





Stanford CS231n 10th Anniversary

Lecture 5 - 110

Convolution layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W₂ x H₂ x K where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Lecture 5 - 111

April 15, 2025

Convolution layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W₂ x H₂ x K where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1

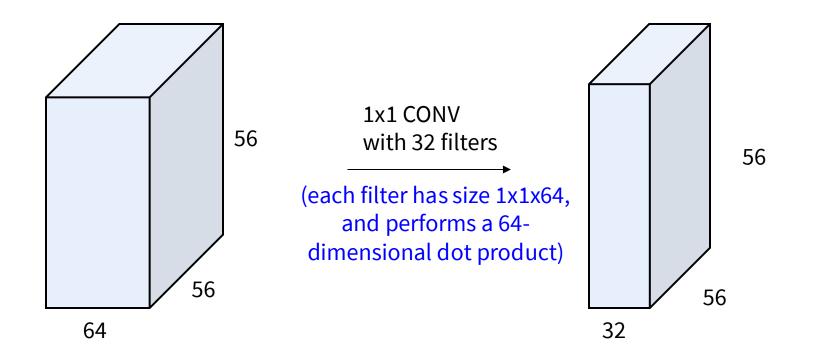
- F = 5, S = 2, P = ? (whatever fits)

April 15, 2025

- F = 1, S = 1, P = 0

Lecture 5 - 112

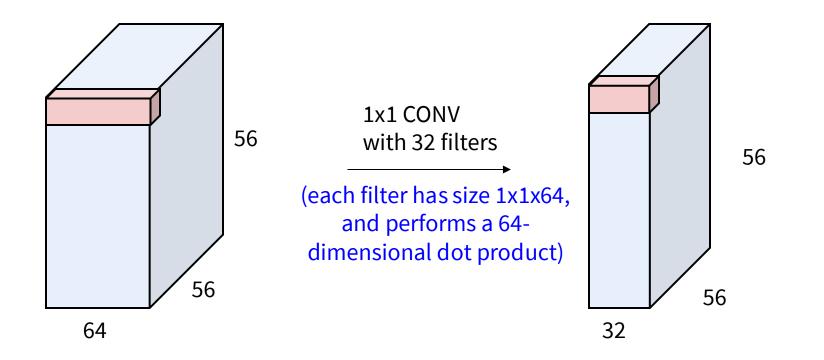
(btw, 1x1 convolution layers make perfect sense)



Stanford CS231n 10th Anniversary

Lecture 5 - 113

(btw, 1x1 convolution layers make perfect sense)



Stanford CS231n 10th Anniversary

Lecture 5 - 114

Example: CONV layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Conv2d

[SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_n-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

- stride controls the stride for the cross-correlation, a single number or a tuple.
- padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to
 describe, but this link has a nice visualization of what dilation does.
- groups controls the connections between inputs and outputs, in_channels and out_channels must both be divisible by groups. For example,
 - At groups=1, all inputs are convolved to all outputs.
 - At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
 - At groups= in_channels, each input channel is convolved with its

own set of filters, of size: $\begin{bmatrix} C_{min} \\ C_{m} \end{bmatrix}$.

The parameters kernel_wize, stride, padding, dilation can either be:

- a single int in which case the same value is used for the height and width dimension
- a tuple of two ints in which case, the first int is used for the height dimension, and the second int for the width dimension

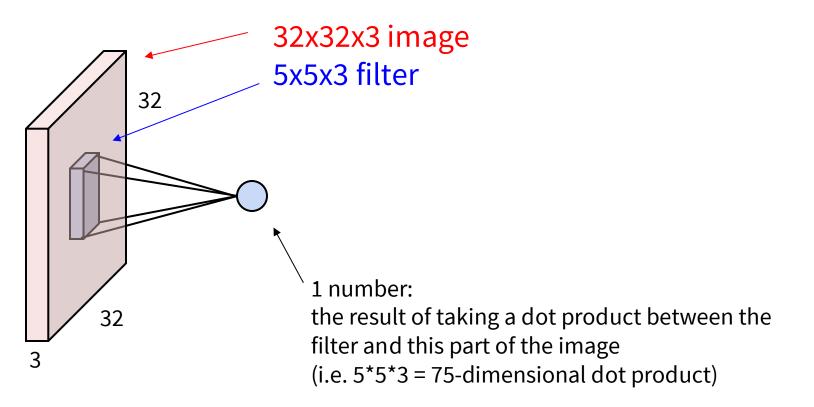
PvT orch is licensed under BSD 3-clause.

April 15, 2025

Stanford CS231n 10th Anniversary

Lecture 5 - 115

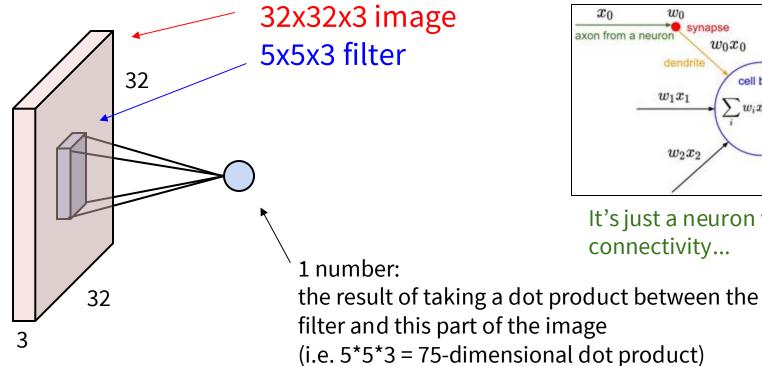
The brain/neuron view of CONV Layer

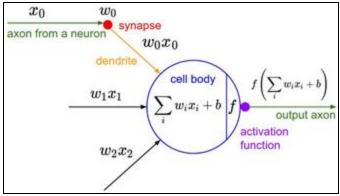


Stanford CS231n 10th Anniversary

Lecture 5 - 116

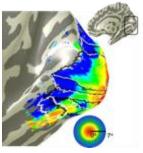
The brain/neuron view of CONV Layer





It's just a neuron with local

connectivity...



Stanford CS231n 10th Anniversary

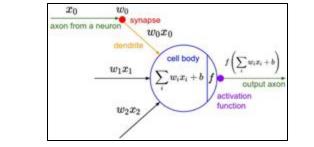
Lecture 5 - 117

32

32

3

5



E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

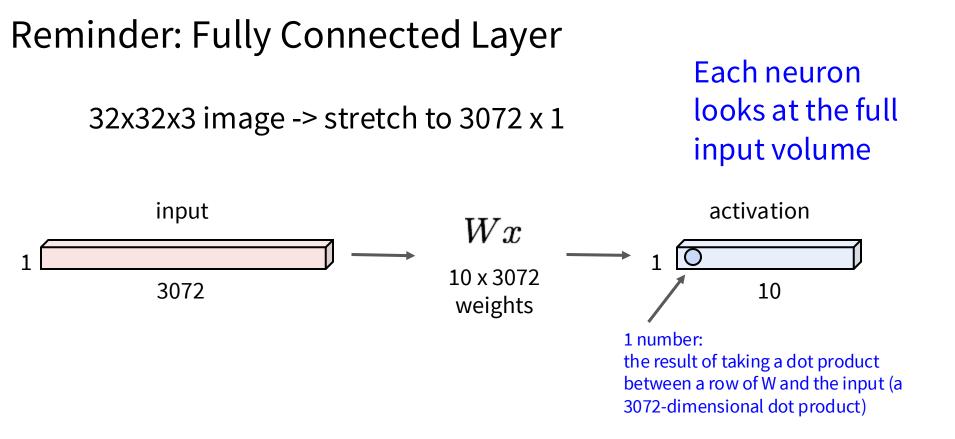
There will be 5 different neurons all looking at the same region in the input volume

Stanford CS231n 10th Anniversary

Lecture 5 - 118

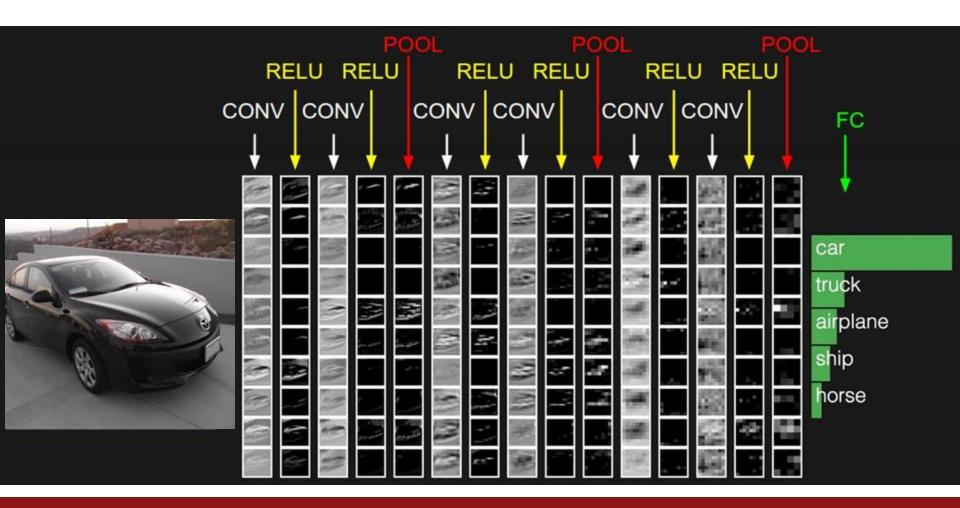
28

28



Stanford CS231n 10th Anniversary

Lecture 5 - 119

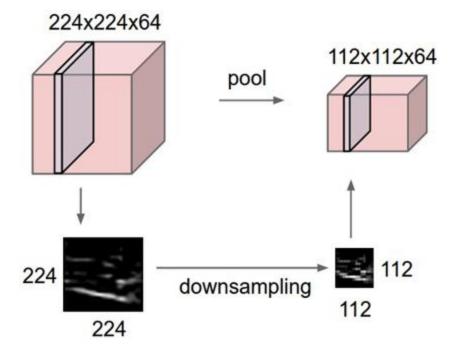


Stanford CS231n 10th Anniversary

Lecture 5 - 120

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently

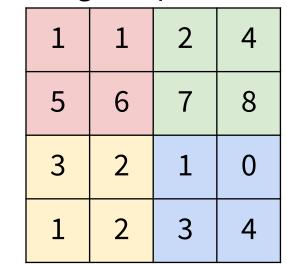


Stanford CS231n 10th Anniversary

Lecture 5 - 121

MAX POOLING

Single depth slice



y

Х

max pool with 2x2 filters and stride 2

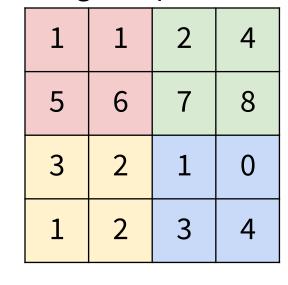
6	8
3	4

Lecture 5 - 122

April 15, 2025

MAX POOLING

Single depth slice



У

Х

max pool with 2x2 filters and stride 2

April 15, 2025

- No learnable parameters
- Introduces spatial invariance

Lecture 5 - 123

Pooling layer: summary

Let's assume input is W₁ x H₁ x C Conv layer needs 2 hyperparameters:

- The spatial extent F
- The stride S

This will produce an output of $W_2 \times H_2 \times C$ where:

Lecture 5 - 124

April 15, 2025

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$

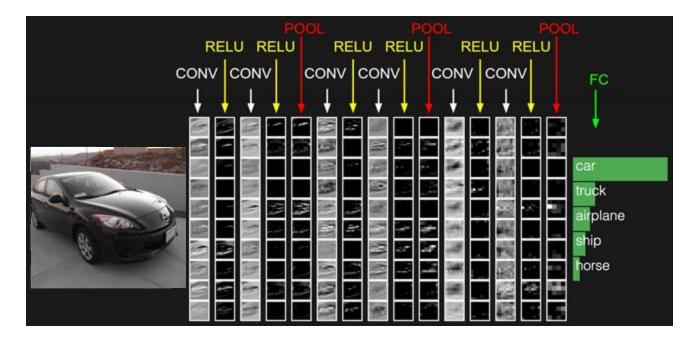
Number of parameters: 0

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like
 [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.
- But recent advances such as ResNet/GoogLeNet have challenged this paradigm

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks



Stanford CS231n 10th Anniversary

Lecture 5 - 126

[ConvNetJS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

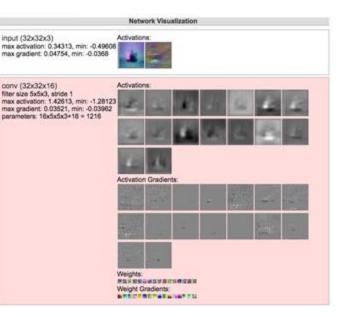
Description

This demo trains a Convolutional Neural Network on the <u>CIFAR-10 dataset</u> in your browser, with nothing but Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94% (not perfect as the dataset can be a bit ambiguous). I used <u>this python script</u> to parse the <u>original files</u> (python version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we don't have to worry about changing learning rates or momentum over time. However, I still included the text fields for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

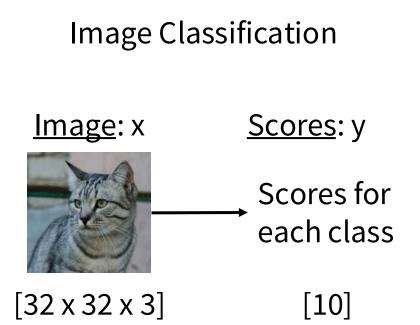


http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Stanford CS231n 10th Anniversary

Lecture 5 - 127

 Encode your problem as y = f(x) where x and y are grids of numbers. Get a dataset of (x, y) pairs.



April 15, 2025

Lecture 5 - 128

- Encode your problem as y = f(x) where x and y are grids of numbers. Get a dataset of (x, y) pairs.
- 2. Define a **loss function** L(y_{pred}, y_{gt}) that measures the correctness of predictions with a single number

Softmax Loss s: vector of n scores y: int in [0, n) $L(s, y) = -\log\left(\frac{e^{-sy}}{\sum_i e^{-s_i}}\right)$

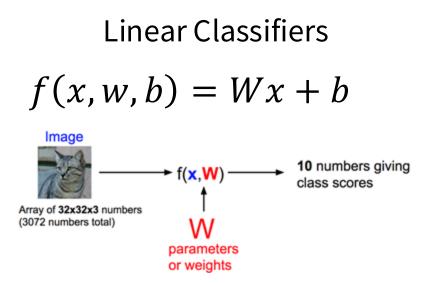
Scores for **y** should be **+inf**

s _____ Others should be -inf

Lecture 5 - 129

April 15, 2025

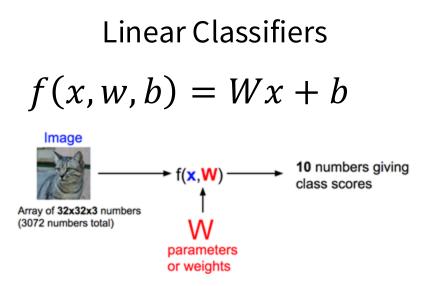
- Encode your problem as y = f(x) where x and y are grids of numbers. Get a dataset of (x, y) pairs.
- Define a loss function L(y_{pred}, y_{gt}) that measures the correctness of predictions with a single number
- 3. Define a **computational graph** that predicts y from x using learnable weights w



April 15, 2025

Lecture 5 - 130

- Encode your problem as y = f(x) where x and y are grids of numbers. Get a dataset of (x, y) pairs.
- Define a loss function L(y_{pred}, y_{gt}) that measures the correctness of predictions with a single number
- 3. Define a **computational graph** that predicts y from x using learnable weights w



April 15, 2025

Lecture 5 - 131

- Encode your problem as y = f(x) where x and y are grids of numbers. Get a dataset of (x, y) pairs.
- 2. Define a **loss function** L(y_{pred}, y_{gt}) that measures the correctness of predictions with a single number
- 3. Define a **computational graph** that predicts y from x using learnable weights w
- 4. Compute gradients dL/dw using **backpropagation**
- 5. Find w that minimizes the loss using **optimization algorithms**

Lecture 5 - 132

April 15, 2025

A bit of history...

The **Mark I Perceptron** machine was the first implementation of the perceptron algorithm.

The machine was connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400-pixel image.

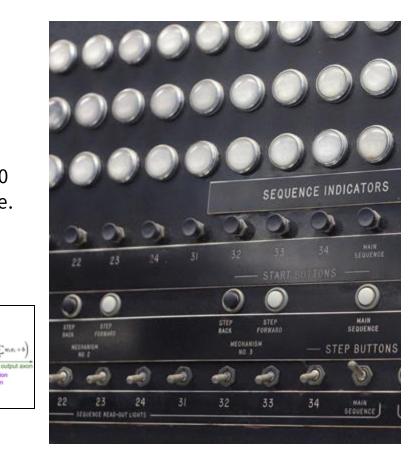
recognized letters of the alphabet

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

xon from a neuron

update rule: $w_i(t+1) = w_i(t) + \alpha(d_j - y_j(t))x_{j,i}$

Frank Rosenblatt, ~1957: Perceptron



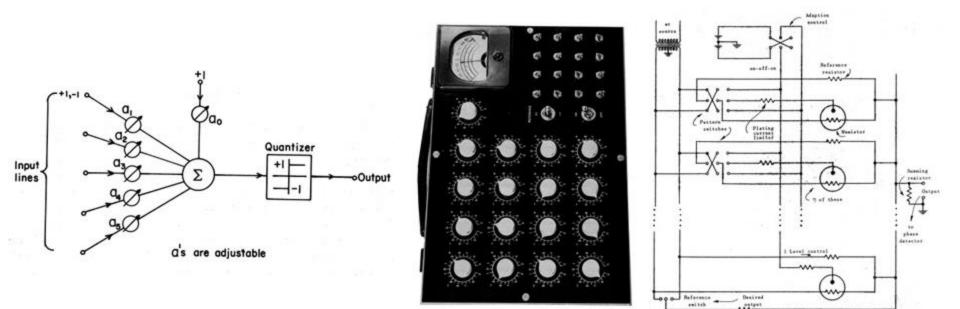
This image by Rocky Acosta is licensed under <u>CC-BY 3.0</u>

April 15, 2025

Stanford CS231n 10th Anniversary

Lecture 5 - 133

A bit of history...



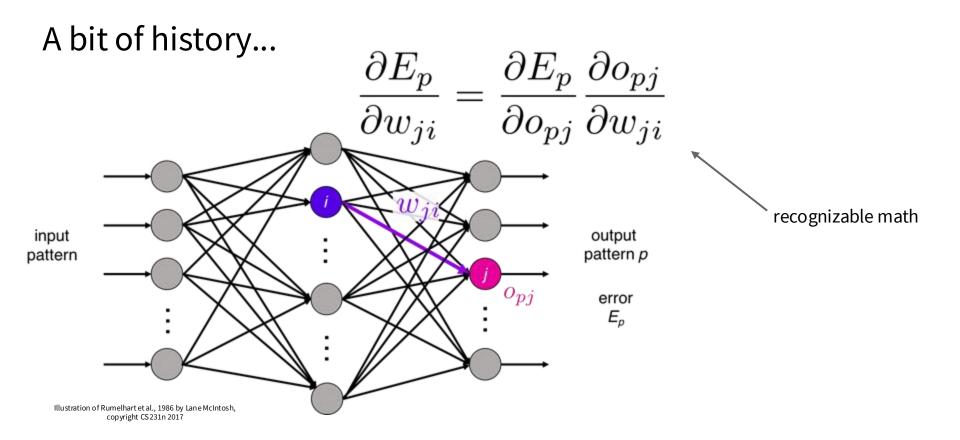
Widrow and Hoff, ~1960: Adaline/Madaline

These figures are reproduced from <u>Widrow 1960, Stanford Electronics Laboratories Technical</u> <u>Report</u> with permission from <u>Stanford University Special Collections</u>.

Stanford CS231n 10th Anniversary

Lecture 5 - 134

ca++ff-ns



Rumelhart et al., 1986: First time back-propagation became popular

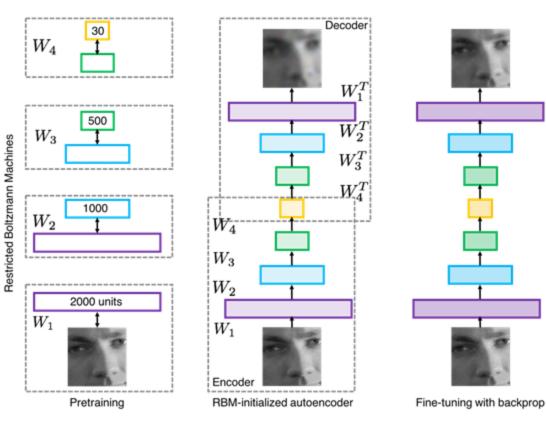
Stanford CS231n 10th Anniversary

Lecture 5 - 135

A bit of history...

[Hinton and Salakhutdinov 2006]

Reinvigorated research in Deep Learning



Illu stration of Hinton and Salakh utdin ov 2006 by Lane McIntosh, copyright CS231n 2017

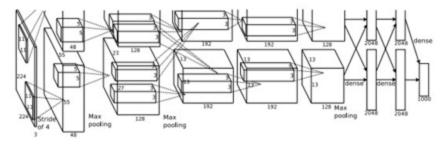
Stanford CS231n 10th Anniversary

Lecture 5 - 136

First strong results

Acoustic Modeling using Deep Belief Networks Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional neural networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012



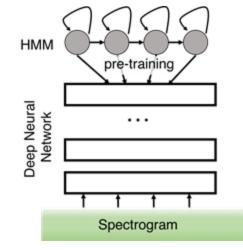
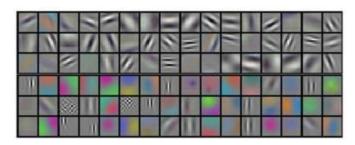


Illustration of Dahl et al. 2012 by Lane McIntosh, copyright CS231n 2017

April 15, 2025



Lecture 5 - 137

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

A bit of history:

Hubel & Wiesel,

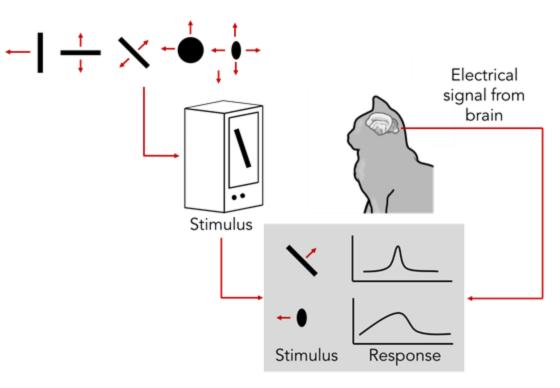
1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...



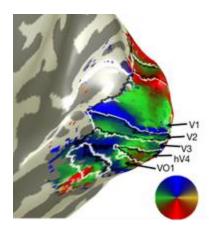
<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

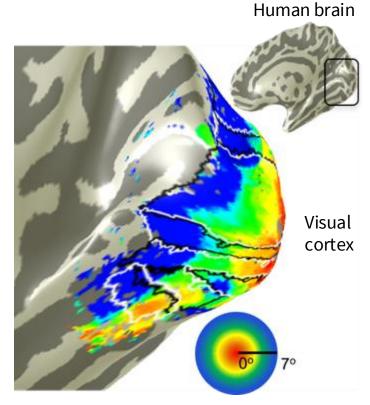
Stanford CS231n 10th Anniversary

Lecture 5 - 138

A bit of history

Topographical mapping in the cortex: nearby cells in cortex represent nearby regions in the visual field





Retinotopy images courtesy of Jesse Gomez in the Stanford Vision & Perception Neuro science Lab.

Stanford CS231n 10th Anniversary

Lecture 5 - 139

Hierarchical organization

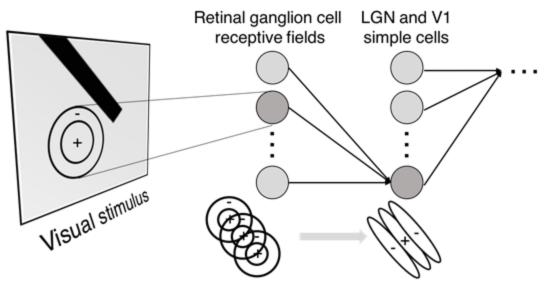


Illustration of hierarchical organization in early visual pathways by Lane McIntosh, copyright CS231n 2017

Simple cells: Response to light orientation

Complex cells: Response to light orientation and movement

Hypercomplex cells: response to movement with an end point

No response

Response (end point)

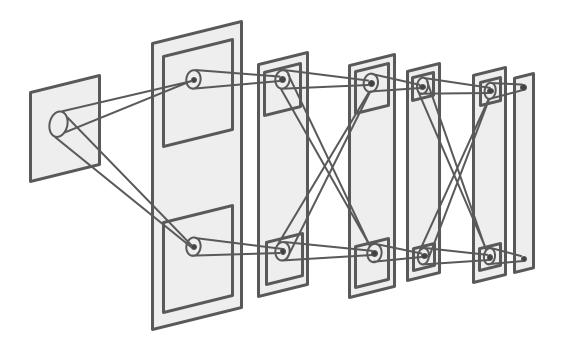
Stanford CS231n 10th Anniversary

Lecture 5 - 140

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling



Lecture 5 - 141

April 15, 2025