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Course Logistics

● Assignment 1 is due next Wednesday (4/23) at 11:59PM!

● Project proposal deadline is due on Friday next week (4/25)
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Lecture Overview – Two Broad Sets of Topics
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Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?

How to build CNNs?
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32
3

3x32x32 image

32

6 activation maps,
each 1x28x28

Don’t forget bias terms! 

Convolution 
Layer

6x3x5x5 
filters Stack activations to get a 

6x28x28 output image!

Recap: Convolution Layer

Slide inspiration: Justin Johnson
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Activation 
Function!

(ReLU)
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

pool with 2x2 filters and 
stride 2

6 8

3 4
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Recap: Pooling Layer

Max 
Pooling

3.25 5.25

2 2
Average 
Pooling
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Convolution Layers Pooling Layers

x h s

Fully-Connected Layers

Activation FunctionsNormalization Layers

!𝑥!,# =
𝑥!,# − 𝜇#

𝜎#$ + 𝜀

Components of CNNs

8

Dropout (sometimes)
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Example Normalization Layer: LayerNorm

10

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

High-level Idea: Learn parameters that let us scale / shift the input data
1. Normalize input data
2. Scale / shift using learned parameters
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Example Normalization Layer: LayerNorm

11

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

High-level Idea: Learn parameters that let us scale / shift the input data
1. Normalize input data
2. Scale / shift using learned parameters

x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize

Statistics calculated per batch à

Learned parameters applied to each sample à
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Other Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018
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You will implement some of these in assignment 2!
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous 
look

cat 
score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in train time

scale at test time
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Convolution Layers Pooling Layers

x h s

Fully-Connected Layers

Activation FunctionsNormalization Layers

!𝑥!,# =
𝑥!,# − 𝜇#

𝜎#$ + 𝜀

Components of CNNs

22

Dropout (sometimes)

Goal: Introduce non-
linearities to our model!
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Key problem:

Many layers of sigmoids à smaller 
and smaller gradients.

Q: In which regions does sigmoid 
have a small gradient?

23
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Key problem:

Large positive or negative values 
can “kill” the gradients. Many layers 
of sigmoids à smaller and smaller 
gradients in practice

24
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

25
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

Dead ReLUs when x < 0!

26
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Activation Functions

GELU
(Gaussian Error 
Linear Unit)

- Computes f(x) = x*Φ(x)

- Very nice behavior around 0
- Smoothness facilitates training in 

practice

- Higher computational cost than ReLU
- Large negative values can still have 

gradient à 0

27

[Hendrycks et al., 2016]

Source: https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg

https://en.m.wikipedia.org/wiki/File:ReLU_and_GELU.svg
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Activation Function Zoo
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Activation Function Zoo

Q: Where are activations used in CNNs?  
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Activation Function Zoo

Q: Where are activations used in CNNs?  

A: Generally placed after linear operators (feedforward/linear 
layer, convolutional layer, etc.)
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Lecture Overview – Two Broad Sets of Topics
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Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

How to build CNNs?

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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Case Study: VGGNet

35

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384
Pool

5x5 conv, 256
11x11 conv, 96

Input

Pool
3x3 conv, 384
3x3 conv, 256

Pool
FC 4096
FC 4096

Softmax
FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14 AlexNet VGG16 VGG19
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Case Study: VGGNet

36

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384
Pool

5x5 conv, 256
11x11 conv, 96

Input

Pool
3x3 conv, 384
3x3 conv, 256

Pool
FC 4096
FC 4096

Softmax
FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

AlexNet VGG16 VGG19
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Case Study: VGGNet

37

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet
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[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

39

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

40

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet
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[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field 
of three 3x3 conv (stride 1) layers?

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

VGG16 VGG19
Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)

A1 A2 A3Input
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Case Study: VGGNet

42

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384
Pool

5x5 conv, 256
11x11 conv, 96

Input

Pool
3x3 conv, 384
3x3 conv, 256

Pool
FC 4096
FC 4096

Softmax
FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

[7x7]
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Case Study: VGGNet

43

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

3x3 conv, 128
Pool

3x3 conv, 64
3x3 conv, 64

Input

3x3 conv, 128
Pool

3x3 conv, 256
3x3 conv, 256

Pool

3x3 conv, 512
3x3 conv, 512

Pool

3x3 conv, 512
3x3 conv, 512

Pool

FC 4096
FC 1000
Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384
Pool

5x5 conv, 256
11x11 conv, 96

Input

Pool
3x3 conv, 384
3x3 conv, 256

Pool
FC 4096
FC 4096

Softmax
FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256
3x3 conv, 256

3x3 conv, 128
3x3 conv, 128

3x3 conv, 64
3x3 conv, 64

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512

FC 4096
FC 1000

FC 4096

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 
72C2 for C channels per layer
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both test and training error
-> The deeper model performs worse, but it’s not caused by overfitting!

Tr
ain

in
g 

er
ro

r

Iterations

56-layer

20-layer

Te
st

 e
rro

r

Iterations

56-layer

20-layer
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Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power 
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, 
deeper models are harder to optimize
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Case Study: ResNet
[He et al., 2015]

Fact: Deep models have more representation power 
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, 
deeper models are harder to optimize

What should the deeper model learn to be at least 
as good as the shallower model?

A solution by construction is copying the learned 
layers from the shallower model and setting 
additional layers to identity mapping.

conv

relu

X

H(x)

conv

Identity

relu

X

H(x)
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Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

conv

conv

relu

“Plain” layers
X

H(x)
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Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

conv

conv

relu

“Plain” layers
X

H(x)

relu

Residual block

conv

conv
X

identity

H(x) = F(x) + x

F(x)

relu

X

Identity mapping: 
H(x) = x if F(x) = 0 
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relu

52

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

conv

conv
X

identity
F(x)

relu

conv

conv

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

52

H(x) = F(x) + x

Identity mapping: 
H(x) = x if F(x) = 0 
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension) 
Reduce the activation 
volume by half. 

3x3 conv, 64 
filters

3x3 conv, 128 
filters, /2 
spatially with 
stride 2
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

relu

Residual block

3x3 conv

3x3 conv
X

identity

F(x) + x

F(x)

relu

X

Full ResNet architecture:
- Stack residual blocks
- Every residual block has 

two 3x3 conv layers
- Periodically, double # of 

filters and downsample 
spatially using stride 2 
(/2 in each dimension)

- Additional conv layer at 
the beginning (stem)

Beginning 
conv layer
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

PoolCase Study: ResNet
[He et al., 2015]

Total depths of 18, 34, 50, 
101, or 152 layers for 
ImageNet
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Case Study: ResNet
[He et al., 2015]

Very deep networks using residual 
connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner 

(3.57% top 5 error)
- Swept all classification and 

detection competitions in 
ILSVRC’15 and COCO’15!

Input

Softmax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

..

.

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

relu

Residual block

conv

conv
X

identity

F(x) + x

F(x)

relu

X
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Lecture Overview – Two Broad Sets of Topics
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Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

How to build CNNs?

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?
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How to initialize weights in neural 
network layers?
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Weight Initialization Case: Values too small

60

Forward pass for a 6-layer 
net with hidden size 4096
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Weight Initialization Case: Values too small
All activations tend to zero 
for deeper network layers
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Weight Initialization Case: Values too large

Increase std of initial 
weights from 0.01 to 0.05
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Weight Initialization Case: Values too large

Increase std of initial 
weights from 0.01 to 0.05

Activations blow up quickly
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How to fix this? Depends on the size of the layer

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015
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One solution: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

“Just right”: Activations are 
nicely scaled for all layers!
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Lecture Overview – Two Broad Sets of Topics

66

Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

How to build CNNs?

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?
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TLDR for Image Normalization: center and scale 
for each channel

- Subtract per-channel mean and
Divide by per-channel std (almost all modern models)

(stats along each channel = 3 numbers)
- Requires pre-computing means and std for each 

pixel channel (given your dataset)

67



Stanford CS231n 10th Anniversary Lecture 6 - April 17, 2025

Lecture Overview – Two Broad Sets of Topics

68

Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

How to build CNNs?

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?
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Regularization: A common pattern
Training: Add some kind of randomness

Testing: Average out randomness (sometimes approximate)
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Regularization: A common pattern
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Dropout

Training: 
Randomly drop 
activations

Testing: Use all 
activations and 
average values 
with p
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Test Time Augmentation: average a fixed set of crops
ResNet:
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness
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Regularization: Cutout
Training: Set random image regions to zero
Testing: Use full image

Examples:
Dropout
Data Augmentation
Cutout / Random Crop

DeVries and Taylor, “Improved Regularization of 
Convolutional Neural Networks with Cutout”, arXiv 2017

Works very well for small datasets like CIFAR, 
less common for large datasets like ImageNet



Stanford CS231n 10th Anniversary Lecture 6 - April 17, 2025

Lecture Overview – Two Broad Sets of Topics

76

Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

How to build CNNs?

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?
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What if you don’t have a lot of data?  Can 
you still train CNNs? 
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Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11 

(More on this in Lecture 13)
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Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

(More on this in Lecture 13)
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet (or internet scale data)

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Freeze these from 
pretrained model
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these from 
pretrained model

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Initialize from 
pretrained 
model, then 
finetune 
everything

With bigger 
dataset, it’s 
better to train 
more layers

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on
final layer

?

quite a lot of 
data

Finetune all 
model layers

?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

More generic

More specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
final layer

Try another 
model or collect 
more data L

quite a lot of 
data

Finetune all 
model layers

Either finetune 
all model layers 
or train from 
scratch!
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Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has 
similar data, train a big model there

2. Transfer learn to your dataset
Deep learning frameworks provide a “Model Zoo” of pretrained 
models so you don’t need to train your own

PyTorch: https://github.com/pytorch/vision
Huggingface: https://github.com/huggingface/pytorch-image-models
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Lecture Overview – Two Broad Sets of Topics
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Layers in CNNs
Activation Functions
CNN Architectures
Weight Initialization

How to build CNNs?

Data Preprocessing
Data augmentation
Transfer Learning
Hyperparameter Selection

How to train CNNs?
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training 
data, turn on small weight decay, find a learning rate that 
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4, 1e-5
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid of hyperparams, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves (next slides)
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Accuracy

time

Train

Accuracy still going up, you 
need to train longer

Val
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Accuracy

time

Train

Q: What is happening here?

Val
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Accuracy

time

Train

Huge train / val gap means 
overfitting! Increase regularization 
or get more data

Val
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Accuracy

time

Train

No gap between train / val means 
underfitting: train longer, can 
possibly use a bigger model

Val
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5
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Random Search vs. Grid Search

Important Parameter Important Parameter
U

ni
m

po
rta

nt
 P

ar
am

et
er

U
ni

m
po

rta
nt

 P
ar

am
et

er

Grid Layout Random Layout

Illustration of Bergstra et al., 2012 by Shayne 
Longpre, copyright CS231n 2017

Random Search for Hyper-
Parameter Optimization
Bergstra and Bengio, 2012
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Summary
We reviewed 8 topics at a high level:

1. Layers in CNNs (Conv, FC, Norm, Dropout)
2. Activation Functions in NNs (ReLU, GELU, etc.)
3. CNN Architectures (VGG, ResNets)
4. Weight Initialization (Maintain Activation Distribution)
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Summary
We reviewed 8 topics at a high level:

5. Data Preprocessing (subtract mean, divide std)
6. Data augmentation (cropping, jitter)
7. Transfer Learning (train on ImageNet first)
8.  Hyperparameter (Checking Losses + Random Search)
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