Lecture 6: Training CNNs and CNN Architectures

Stanford CS231n 10th Anniversary

Course Logistics

- Assignment 1 is due **next Wednesday** (4/23) at 11:59PM!
- Project proposal deadline is due on Friday next week (4/25)

Stanford CS231n 10th Anniversary

How to build CNNs? -

Layers in CNNs Activation Functions CNN Architectures Weight Initialization

How to train CNNs? -

Data Preprocessing Data augmentation Transfer Learning Hyperparameter Selection

Stanford CS231n 10th Anniversary

How to build CNNs?

Layers in CNNs Activation Functions CNN Architectures **Weight Initialization**

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning **Hyperparameter Selection**

Stanford CS231n 10th Anniversary

How to build CNNs?

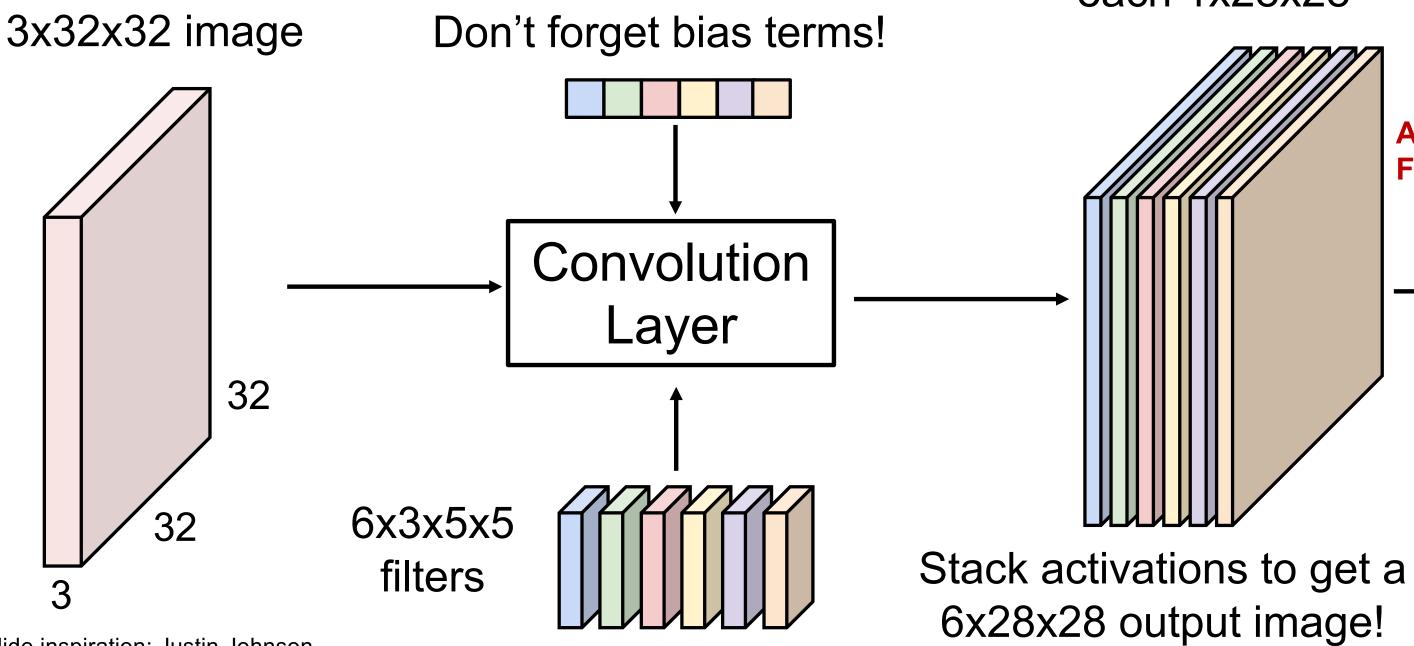
Layers in CNNs Activation Functions CNN Architectures Weight Initialization

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning Hyperparameter Selection

Stanford CS231n 10th Anniversary

Recap: Convolution Layer

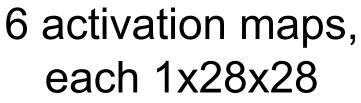


Lecture 6 -

6

Slide inspiration: Justin Johnson

Stanford CS231n 10th Anniversary

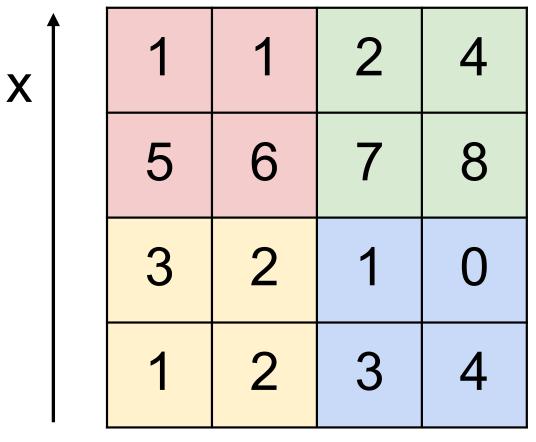


Activation Function!

(ReLU)

Recap: Pooling Layer

Single depth slice



pool with 2x2 filters and stride 2

Lecture 6 - 7

Stanford CS231n 10th Anniversary

У

3.25	5.25
2	2

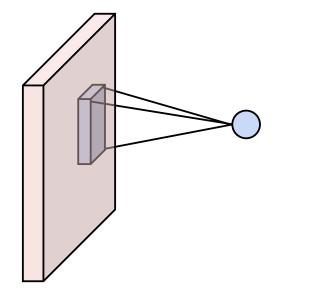
Average Pooling

6	8
3	4

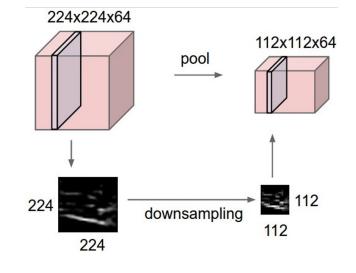
Max Pooling

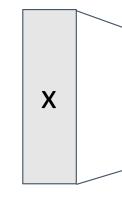
Components of CNNs

Convolution Layers



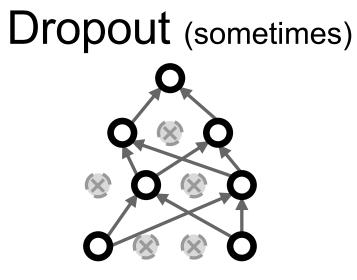
Pooling Layers





Normalization Layers

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

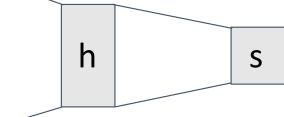


-10

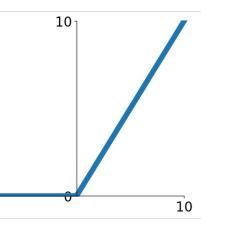
Stanford CS231n 10th Anniversary

Lecture 6 - 8

Fully-Connected Layers

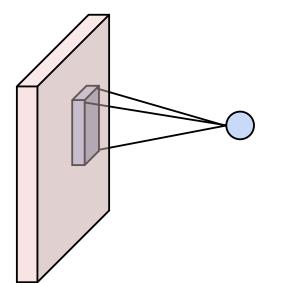


Activation Functions

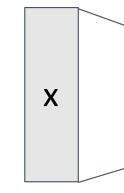


Components of CNNs

Convolution Layers

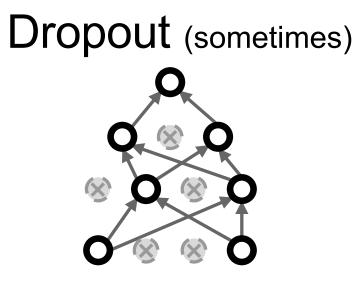


Pooling Layers 224x224x64 112x112x64 pool 112 224 downsampling 112 224



-10

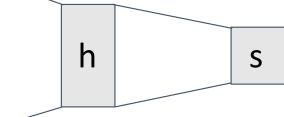
Normalization Layers $\widehat{x}_{i,j}$ (σ_j^2 8



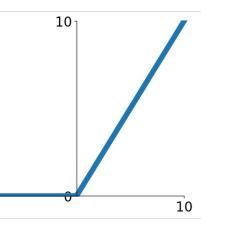
Lecture 6 - 9

Stanford CS231n 10th Anniversary

Fully-Connected Layers



Activation Functions



Example Normalization Layer: LayerNorm

High-level Idea: Learn parameters that let us scale / shift the input data

- 1. Normalize input data
- 2. Scale / shift using learned parameters

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

Stanford CS231n 10th Anniversary

orm

Example Normalization Layer: LayerNorm

High-level Idea: Learn parameters that let us scale / shift the input data

- 1. Normalize input data
- 2. Scale / shift using learned parameters

Statistics calculated per batch \rightarrow

Learned parameters applied to each sample \rightarrow

 $\mathbf{x}: \mathbf{N} \times \mathbf{D}$ Normalize

 $\mu, \sigma: N \times$

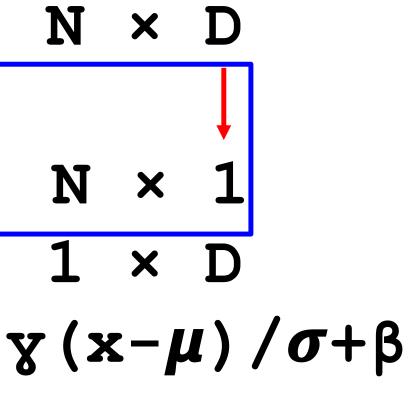
γ,β:

 $y = y(x-\mu)/\sigma+\beta$

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

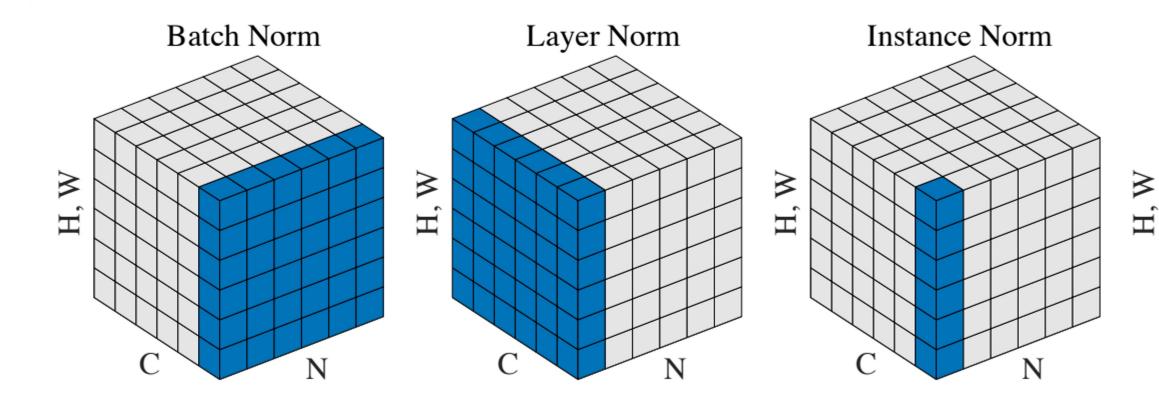
Stanford CS231n 10th Anniversary

Lecture 6 - 11



<u>April 17, 2025</u>

Other Normalization Layers

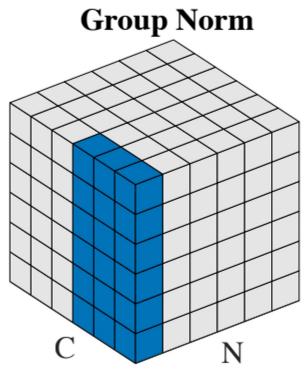


You will implement some of these in assignment 2!

Wu and He, "Group Normalization", ECCV 2018

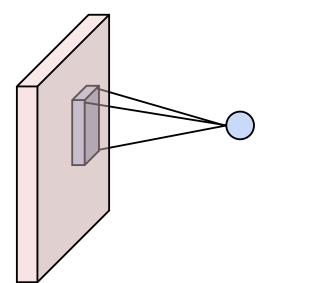
Stanford CS231n 10th Anniversary

April 17, 2025

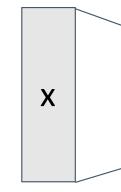


Components of CNNs

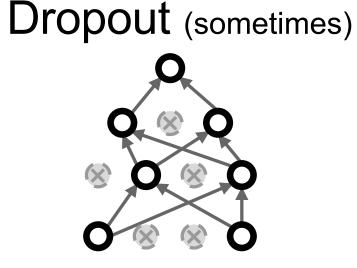
Convolution Layers



Pooling Layers 224x224x64 112x112x64 pool 112 224 downsampling 224



Normalization Layers $\widehat{x}_{i,j}$ (σ_j^2 8

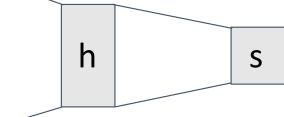


Lecture 6 - 13

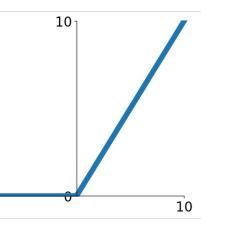
-10

Stanford CS231n 10th Anniversary

Fully-Connected Layers

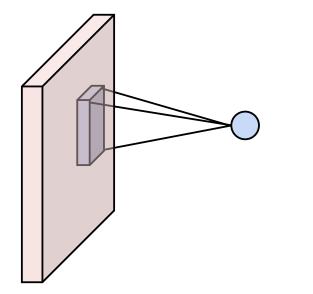


Activation Functions



Components of CNNs

Convolution Layers

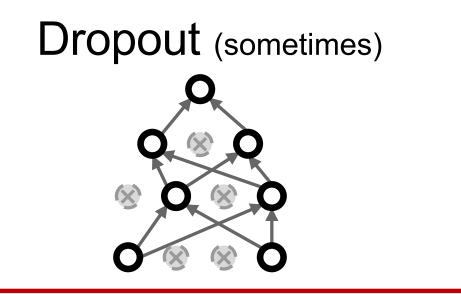




Χ

Normalization Layers

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

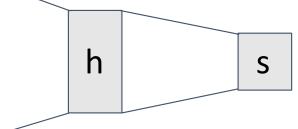


-10

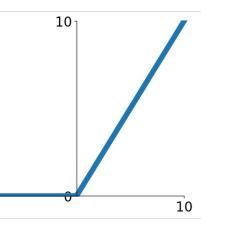
Stanford CS231n 10th Anniversary

Lecture 6 - 14

Fully-Connected Layers

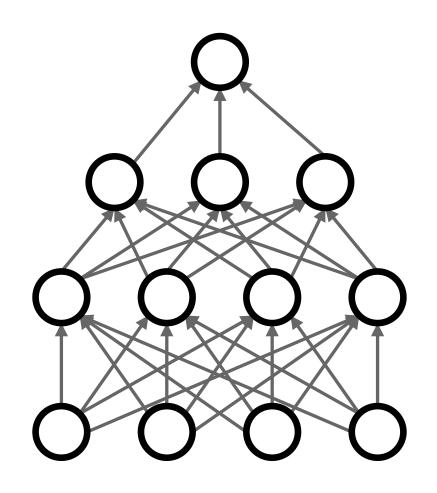


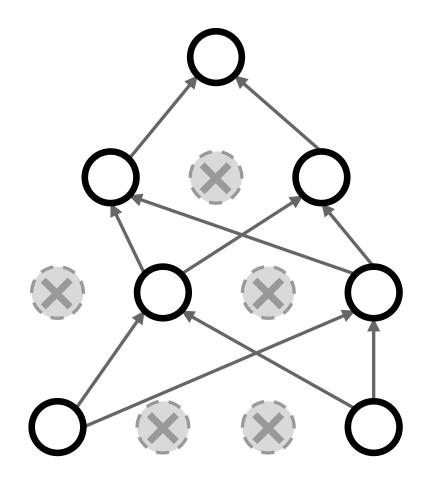
Activation Functions



Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common





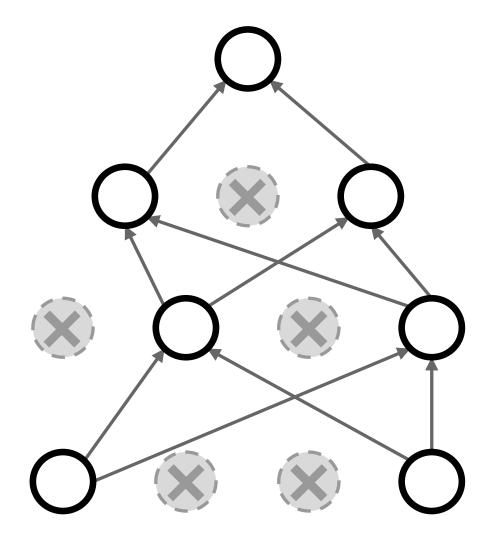
15

Lecture 6 -

Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

Stanford CS231n 10th Anniversary

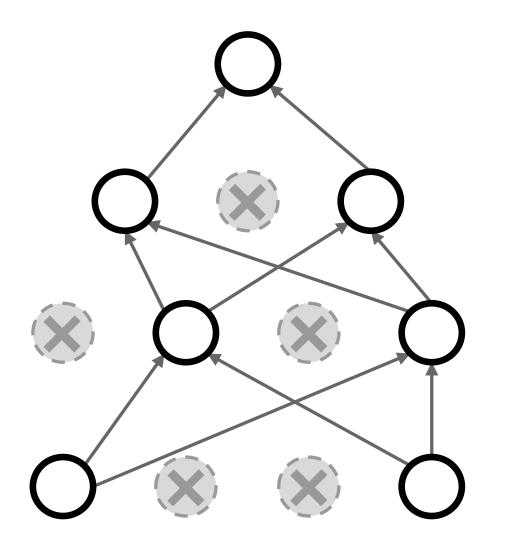
Regularization: Dropout How can this possibly be a good idea?



Forces the network to have a redundant representation; Prevents co-adaptation of features

Stanford CS231n 10th Anniversary

Regularization: Dropout How can this possibly be a good idea?



Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has 2⁴⁰⁹⁶ ~ 10¹²³³ possible masks! Only ~ 10^{82} atoms in the universe...

Stanford CS231n 10th Anniversary

Lecture 6 - 17

Dropout: Test time

def predict(X):

```
# ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Vanilla Dropout: Not recommended implementation (see notes below) """ **p** = 0.5 # probability of keeping a unit active. higher = less dropout def train_step(X): """ X contains the data """ # forward pass for example 3-layer neural network H1 = np.maximum(0, np.dot(W1, X) + b1)U1 = np.random.rand(*H1.shape) H1 *= U1 # drop! H2 = np.maximum(0, np.dot(W2, H1) + b2) U2 = np.random.rand(*H2.shape) < p # second dropout mask H2 *= U2 # drop! out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown) # perform parameter update... (not shown) def predict(X): # ensembled forward pass H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations out = np.dot(W3, H2) + b3

Stanford CS231n 10th Anniversary

Lecture 6 - 19

Dropout Summary

drop in train time

scale at test time

How to build CNNs? -

Layers in CNNs Activation Functions CNN Architectures Weight Initialization

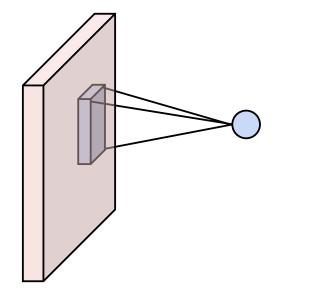
How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning Hyperparameter Selection

Stanford CS231n 10th Anniversary

Components of CNNs

Convolution Layers

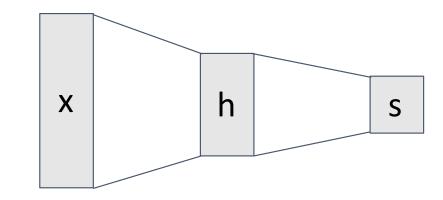


Pooling Layers 224x224x64 112x112x64 pool

downsampling

224

224



Normalization Layers

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Dropout (sometimes) X

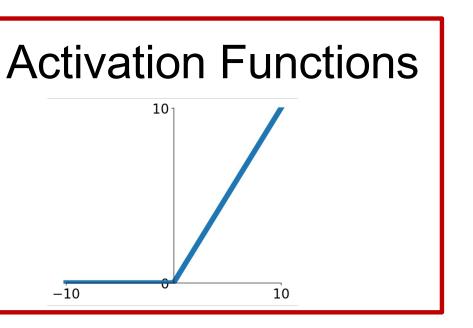
112

112

Stanford CS231n 10th Anniversary

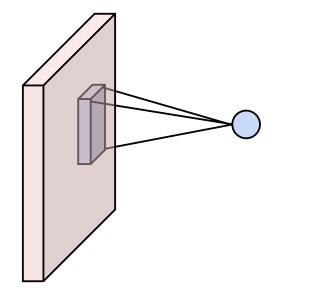
Lecture 6 - 21

Fully-Connected Layers



Components of CNNs

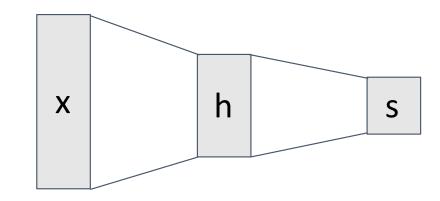
Convolution Layers



Pooling Layers



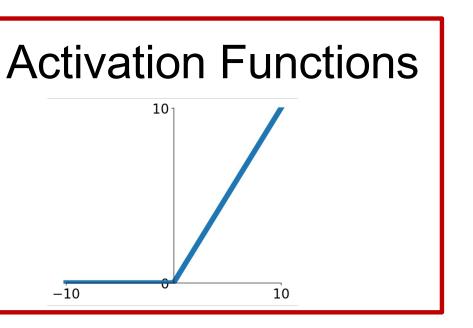
Lecture 6 - 22



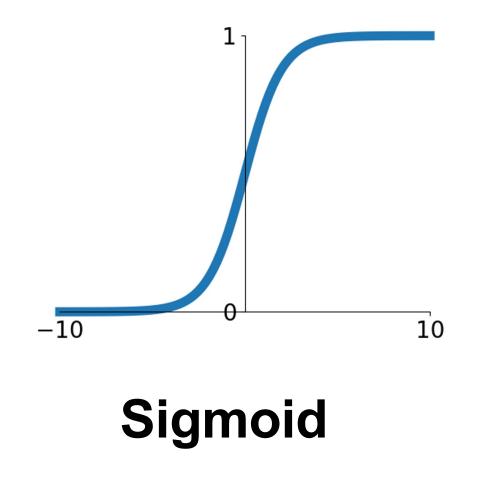
Normalization Layers Dropout (sometimes) **Goal: Introduce non**linearities to our model!

Stanford CS231n 10th Anniversary

Fully-Connected Layers



<u>April 17, 2025</u>



$$\sigma(x) = 1/(1 +$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

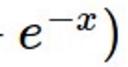
Key problem:

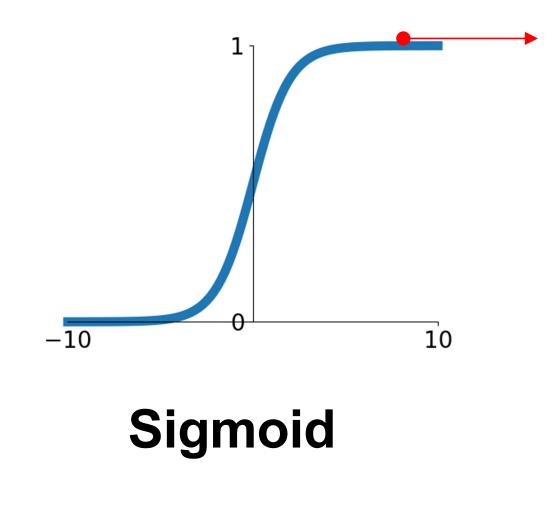
Many layers of sigmoids \rightarrow smaller and smaller gradients.

Q: In which regions does sigmoid have a small gradient?

Stanford CS231n 10th Anniversary

Lecture 6 - 23





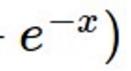
$$\sigma(x) = 1/(1 +$$

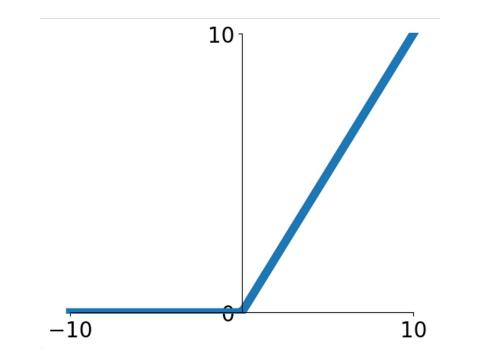
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

Key problem:

Large positive or negative values can "kill" the gradients. Many layers of sigmoids \rightarrow smaller and smaller gradients in practice

Stanford CS231n 10th Anniversary





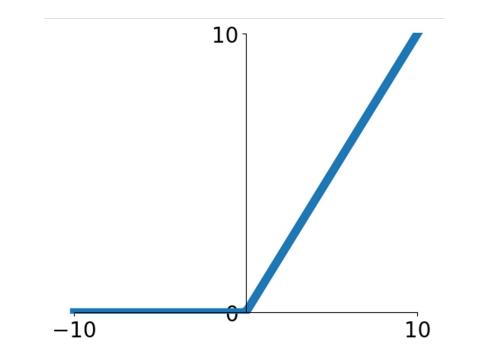
- Computes **f(x) = max(0,x)**
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid in practice (e.g. 6x)

Lecture 6 - 25

ReLU (Rectified Linear Unit)

Stanford CS231n 10th Anniversary

[Krizhevsky et al., 2012]



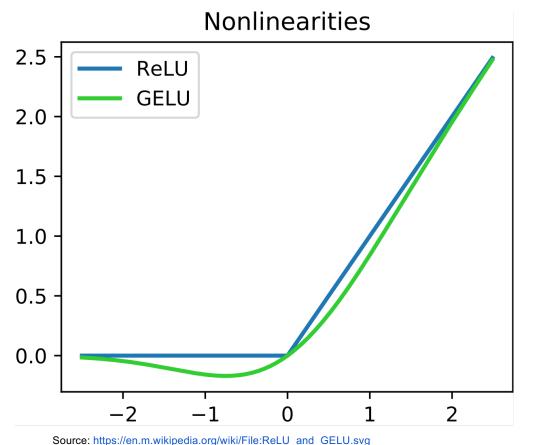
ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

Dead ReLUs when x < 0!

Stanford CS231n 10th Anniversary



GELU (Gaussian Error Linear Unit)

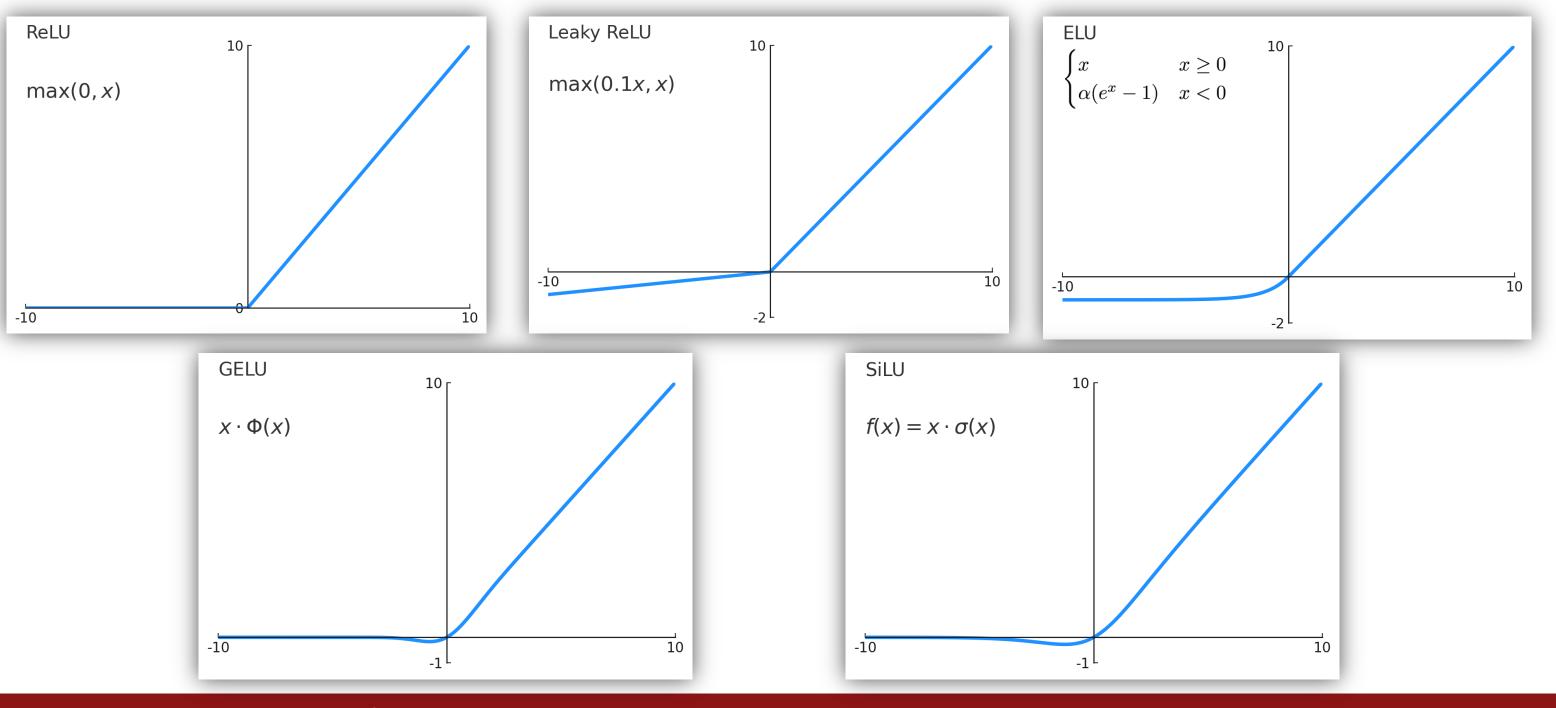
Stanford CS231n 10th Anniversary

- Computes $f(x) = x^* \Phi(x)$
- Very nice behavior around 0
- Smoothness facilitates training in practice
- Higher computational cost than ReLU
- Large negative values can still have gradient $\rightarrow 0$

Lecture 6 - 27

[Hendrycks et al., 2016]

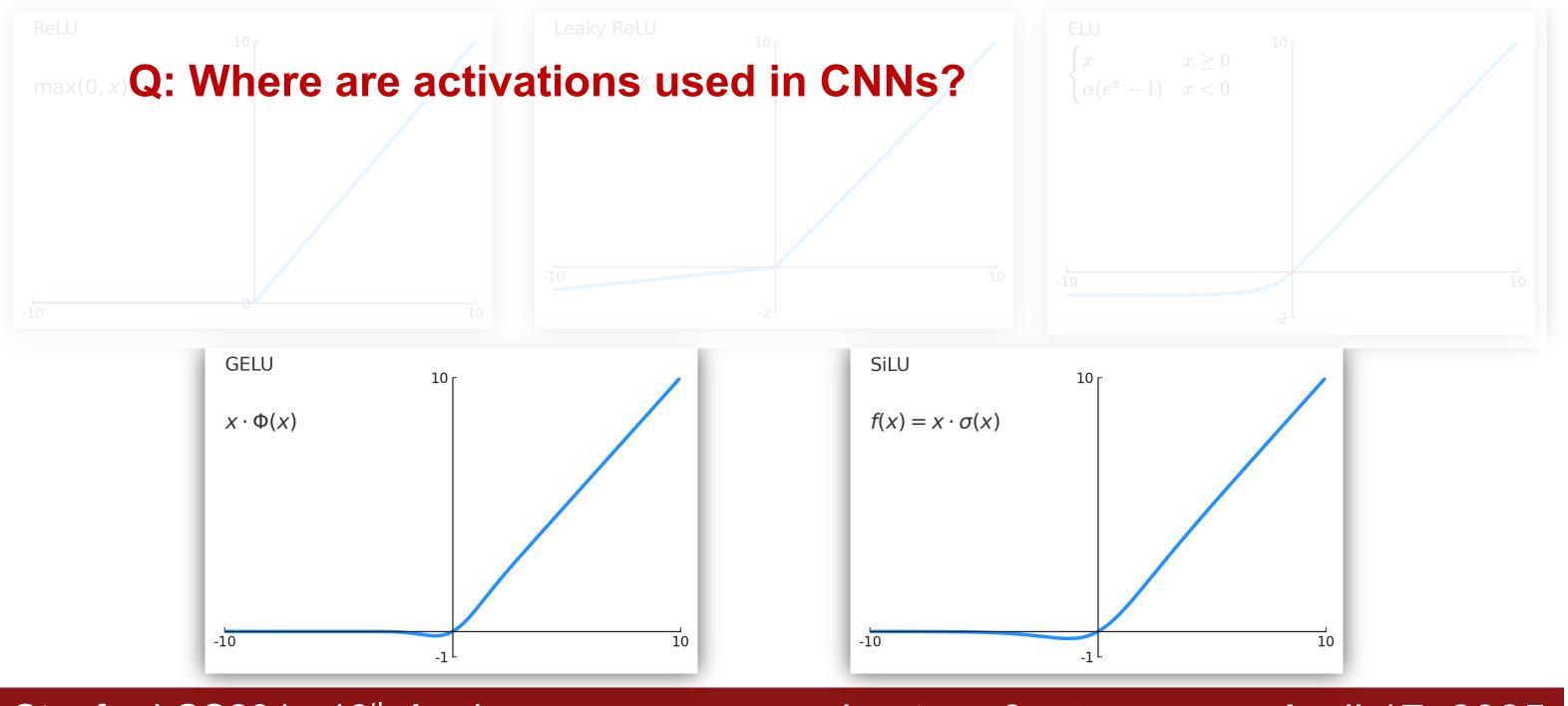
Activation Function Zoo



Stanford CS231n 10th Anniversary

Lecture 6 - 28

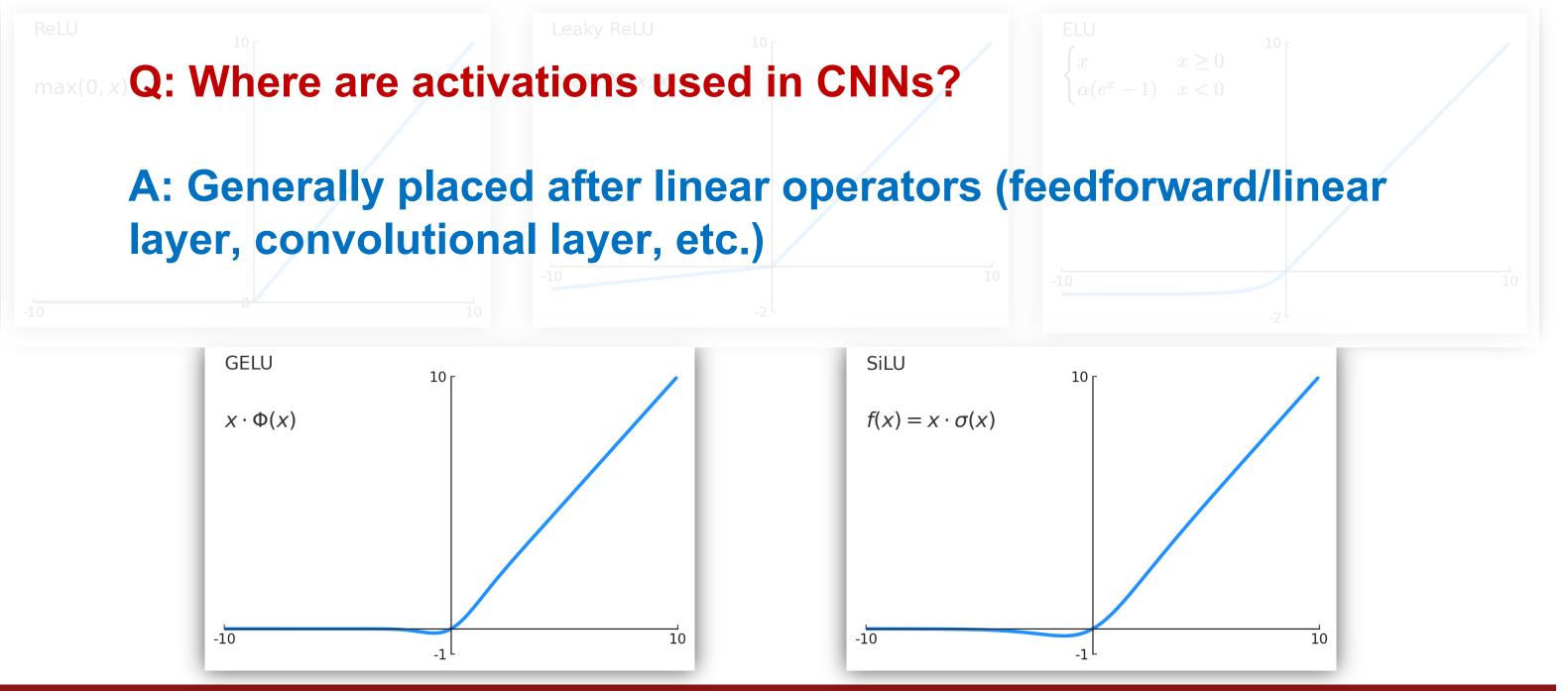
Activation Function Zoo



Stanford CS231n 10th Anniversary

Lecture 6 - 29

Activation Function Zoo



Stanford CS231n 10th Anniversary

Lecture 6 - 30

How to build CNNs?

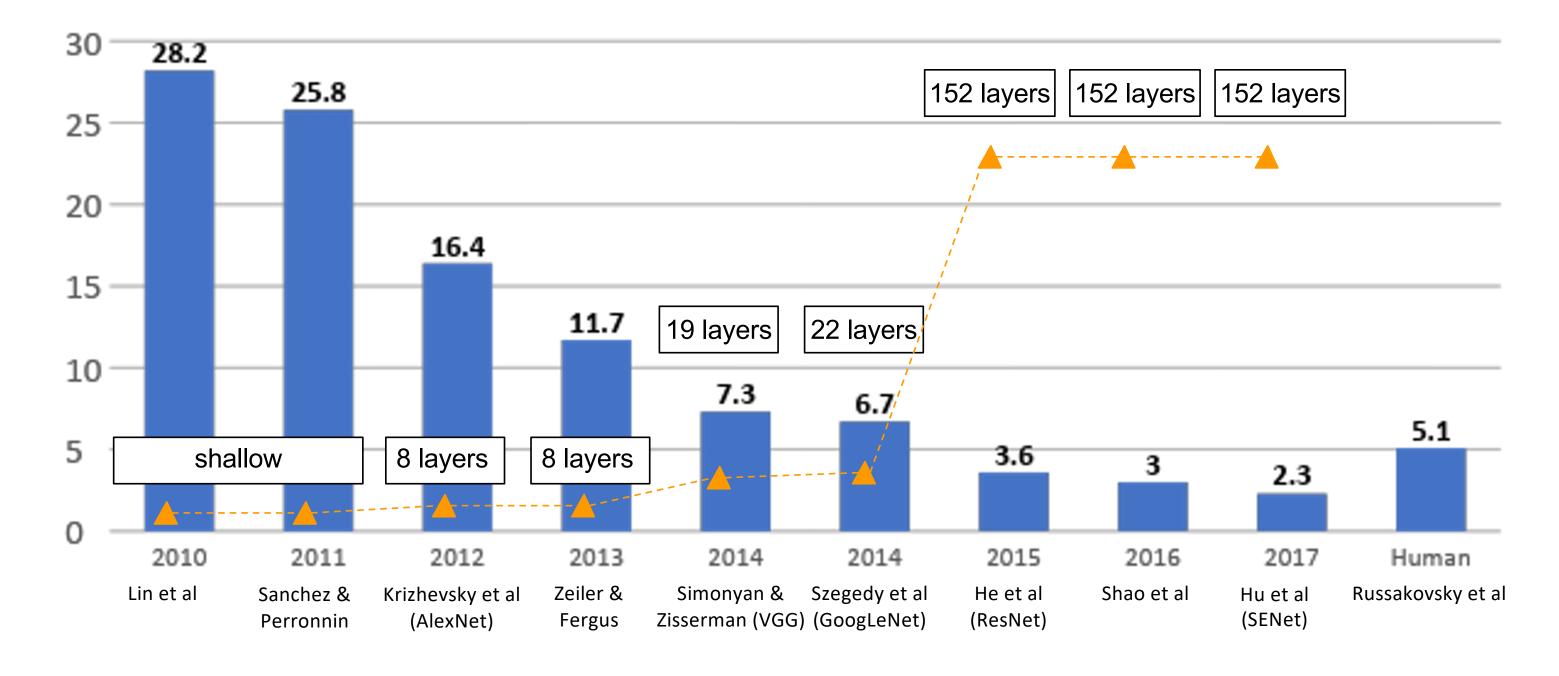
Layers in CNNs **Activation Functions CNN Architectures Weight Initialization**

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning **Hyperparameter Selection**

Stanford CS231n 10th Anniversary

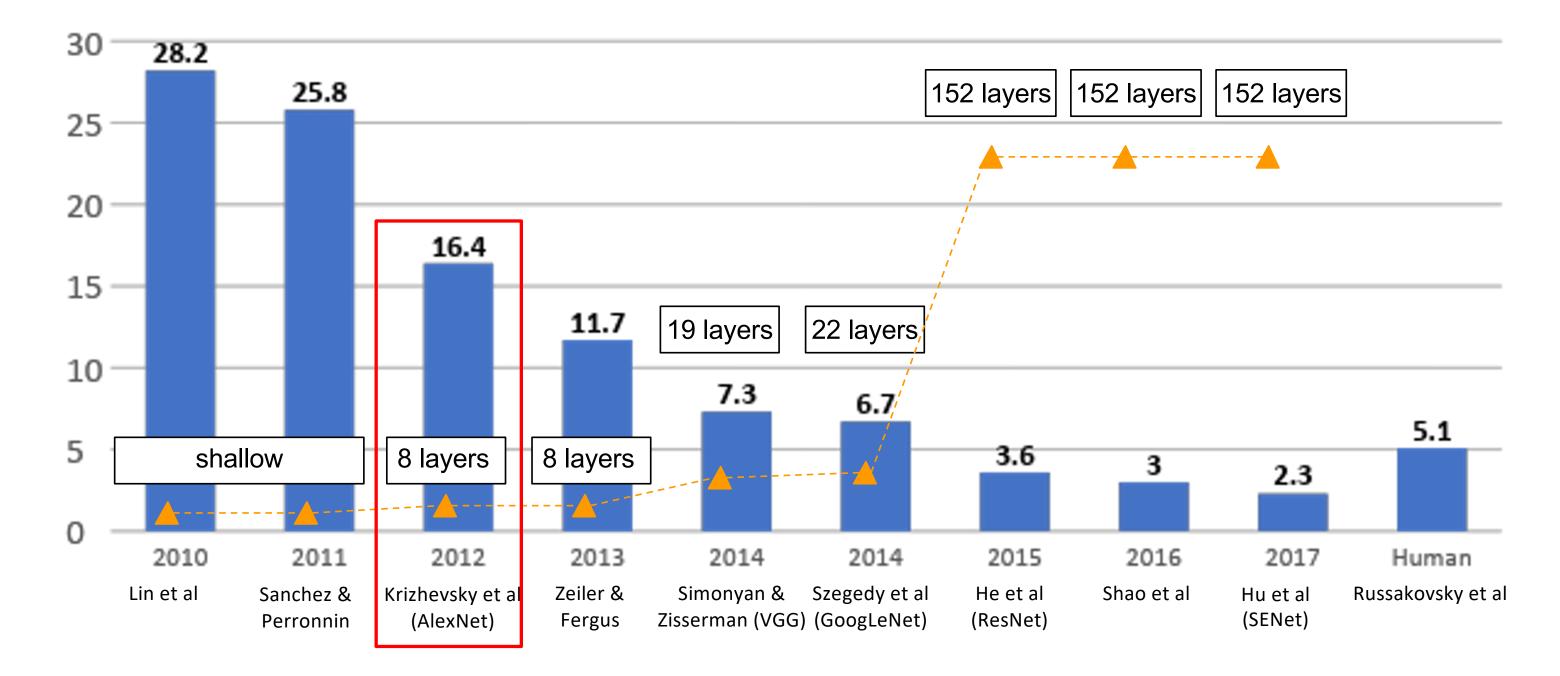
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



Stanford CS231n 10th Anniversary

Lecture 6 - 32

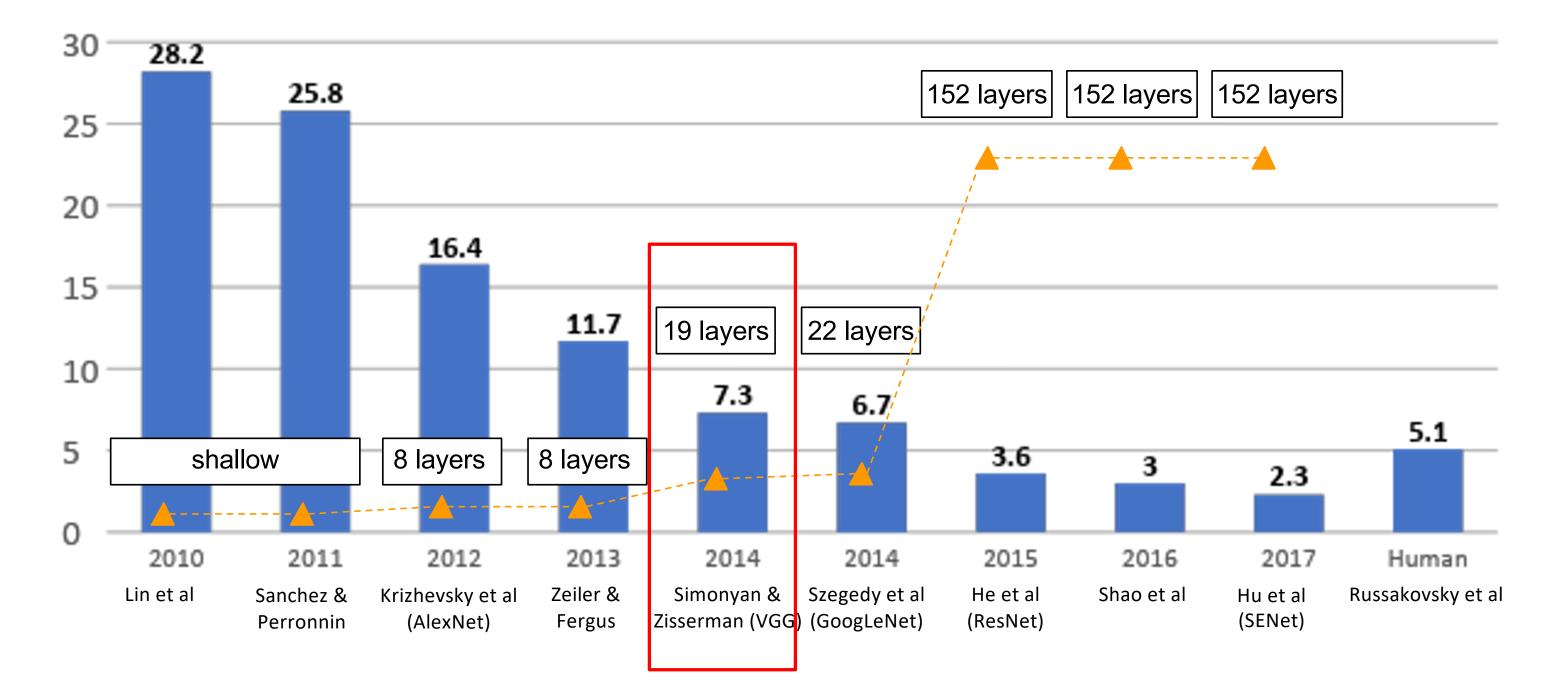
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



Stanford CS231n 10th Anniversary

Lecture 6 - 33

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



Lecture 6 - 34

Stanford CS231n 10th Anniversary

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13(ZFNet)-> 7.3% top 5 error in ILSVRC'14

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Stanford CS231n 10th Anniversary

Lecture 6 - 35

April 17, 2025

VGG16

V	G	G	1	9
v	$\mathbf{\nabla}$	$\mathbf{\nabla}$		\mathbf{U}

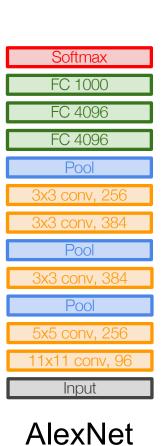
Softmax
C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

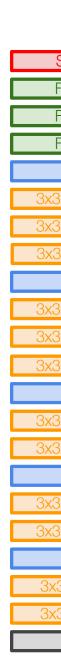
Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)





Stanford CS231n 10th Anniversary

Lecture 6 - 36

April 17, 2025

VGG16

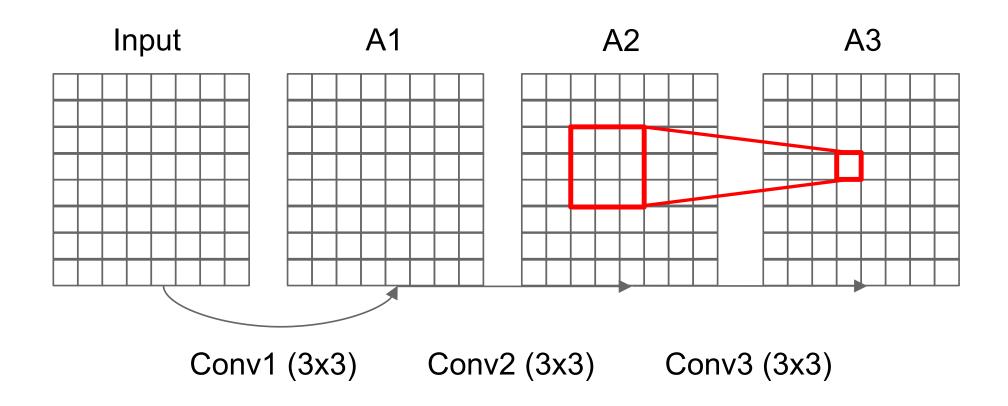
V	G	G	1	9
v	\sim	\sim		

Softmax
-C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Stanford CS231n 10th Anniversary

Lecture 6 - 37

April 17, 2025

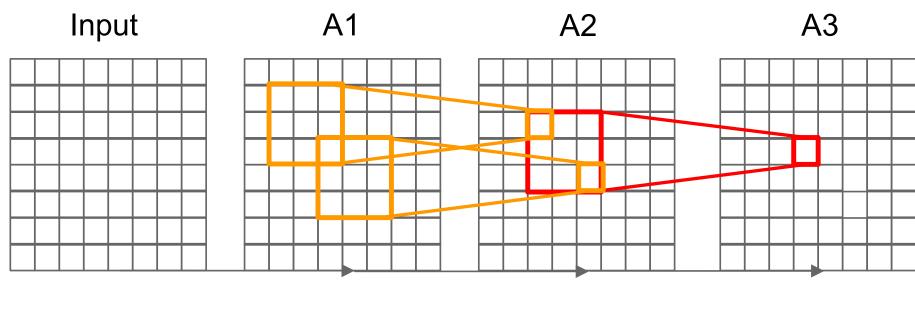
V	G	G	1	9
v	\sim	\sim		

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Conv1 (3x3)

Conv2 (3x3)

3) Conv3 (3x3)

V

Stanford CS231n 10th Anniversary

Lecture 6 - 38

April 17, 2025

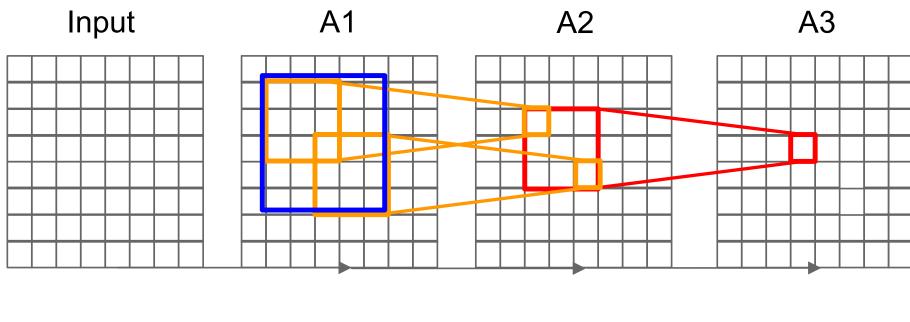
V	G	G	1	9
v	\sim	\sim		

Softmax
-C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Conv1 (3x3)

Conv2 (3x3)

Conv3 (3x3)

Stanford CS231n 10th Anniversary

Lecture 6 - 39

April 17, 2025

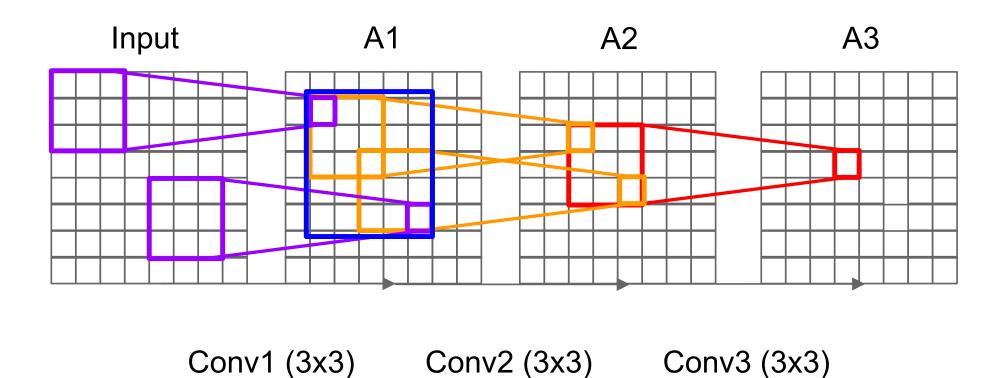
V	G	G	1	9
v	\sim	\sim		

Softmax
-C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Stanford CS231n 10th Anniversary

April 17, 2025

VGG16

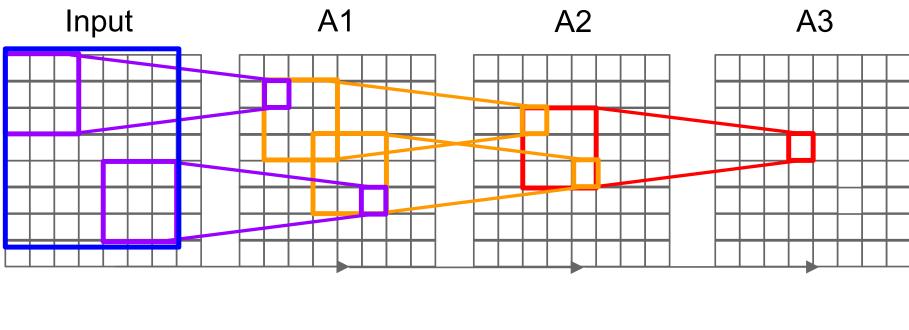
V	G	G	1	9
v	\sim	\sim		

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Conv1 (3x3)

Conv2 (3x3) Conv3 (3x3)

Stanford CS231n 10th Anniversary Lecture 6 - 41

April 17, 2025

V	G	G	1	9
v	\sim	\sim		

Softmax
-C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

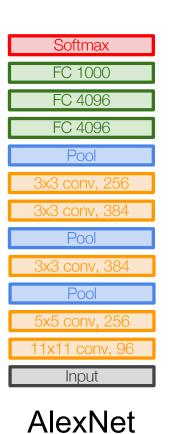
Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

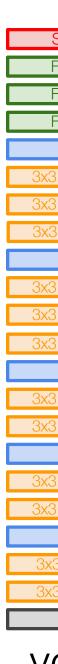
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

[7x7]





 \mathbf{V}

Stanford CS231n 10th Anniversary

Lecture 6 - 42

April 17, 2025

V	G	G	1	9
v	\sim	\sim		

Softmax
-C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

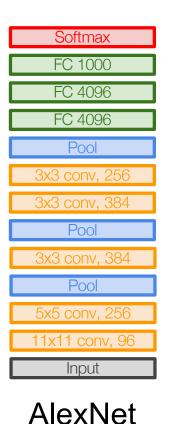
[Simonyan and Zisserman, 2014]

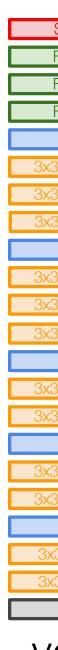
Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2) vs$. 7²C² for C channels per layer





Stanford CS231n 10th Anniversary

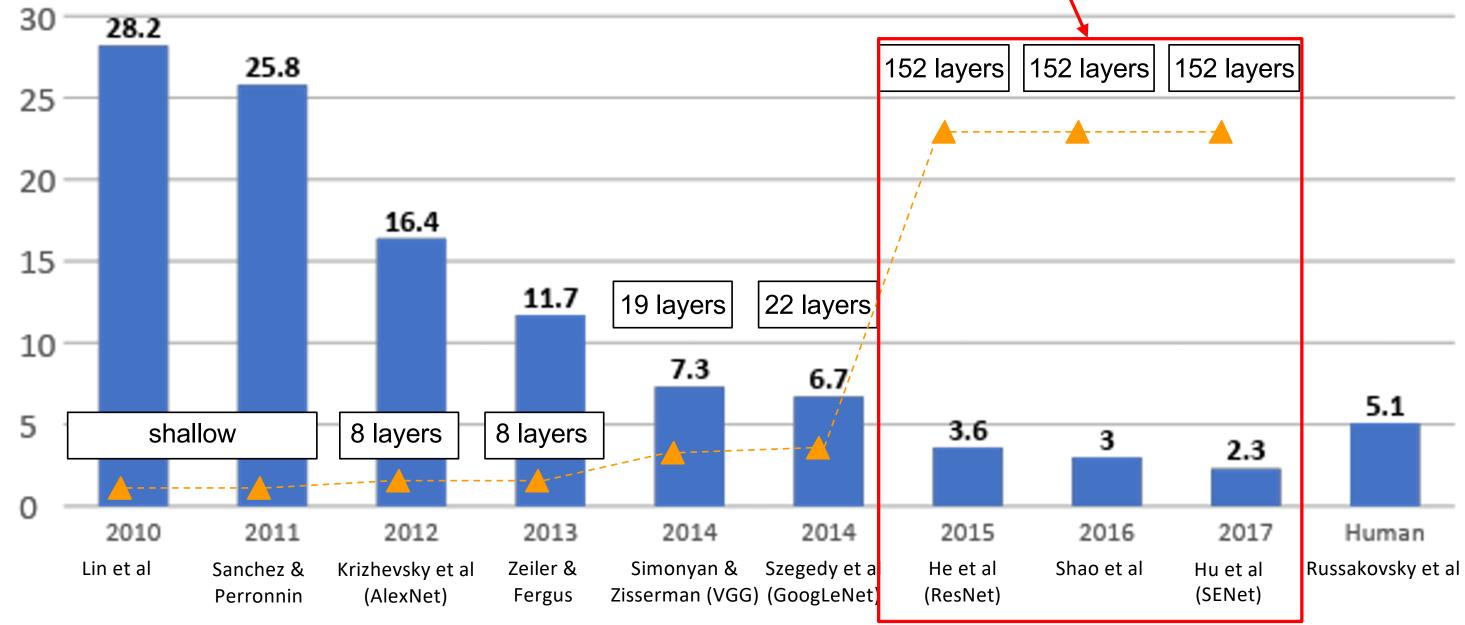
April 17, 2025

V	G	G	1	9
v	\sim	\sim		

Softmax
-C 1000
-C 4096
-C 4096
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 512
conv, 512
conv, 512
Pool
conv, 256
conv, 256
Pool
conv, 128
conv, 128
Pool
3 conv, 64
3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners "Revolution of Depth"



Stanford CS231n 10th Anniversary

Lecture 6 - 44

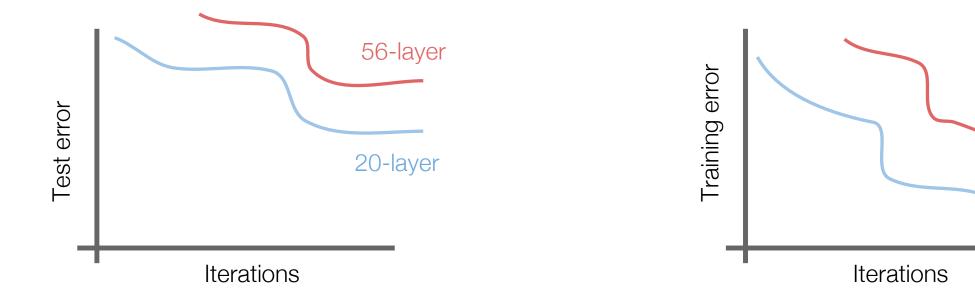
[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Stanford CS231n 10th Anniversary

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?



Stanford CS231n 10th Anniversary

56-layer

20-layer

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both test and training error -> The deeper model performs worse, but it's not caused by overfitting!

Stanford CS231n 10th Anniversary

56-layer 20-layer

[He et al., 2015]

Fact: Deep models have more representation power (more parameters) than shallower models.

Hypothesis: the problem is an *optimization* problem, **deeper models are harder to optimize**

Stanford CS231n 10th Anniversary

[He et al., 2015]

Fact: Deep models have more representation power (more parameters) than shallower models.

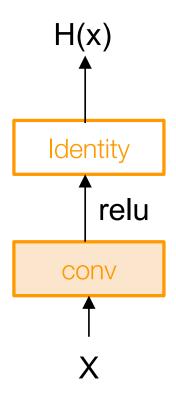
Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

What should the deeper model learn to be at least as good as the shallower model?

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping. H(x) relu conv

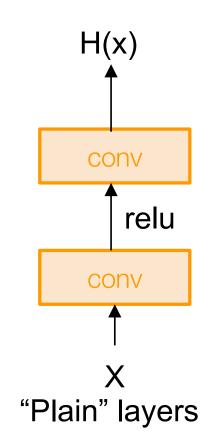
Lecture 6 - 49

Stanford CS231n 10th Anniversary



[He et al., 2015]

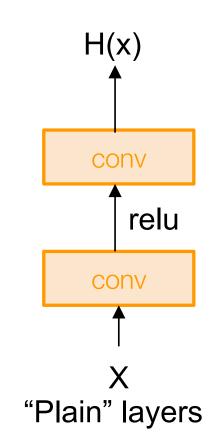
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

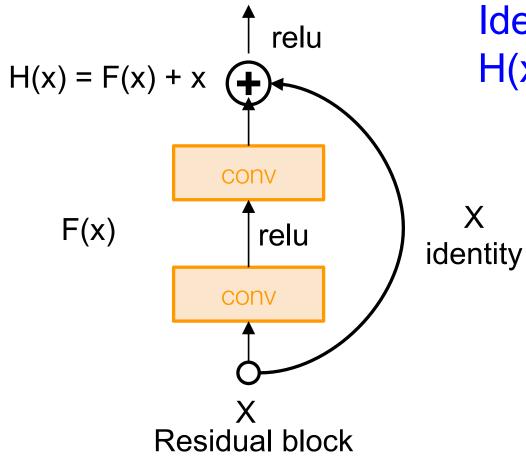


Stanford CS231n 10th Anniversary

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping





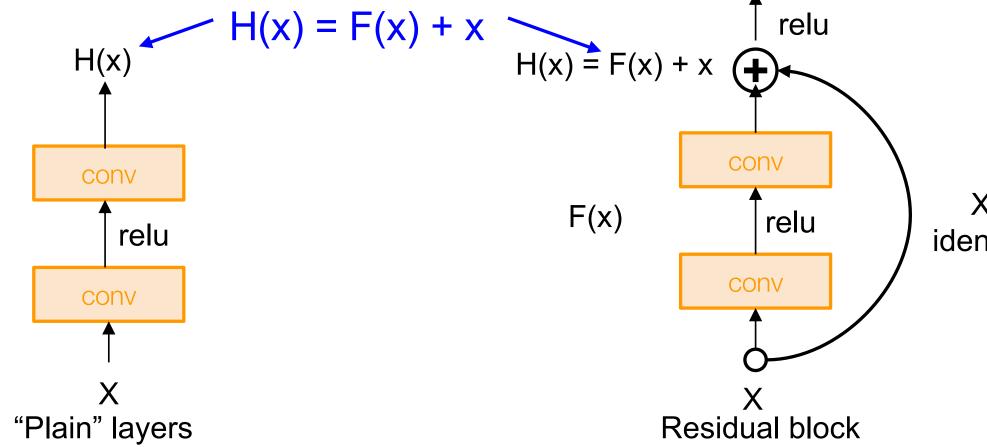
Lecture 6 - 51

Stanford CS231n 10th Anniversary

Identity mapping: H(x) = x if F(x) = 0

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping



Stanford CS231n 10th Anniversary

X identity

Lecture 6 - 52

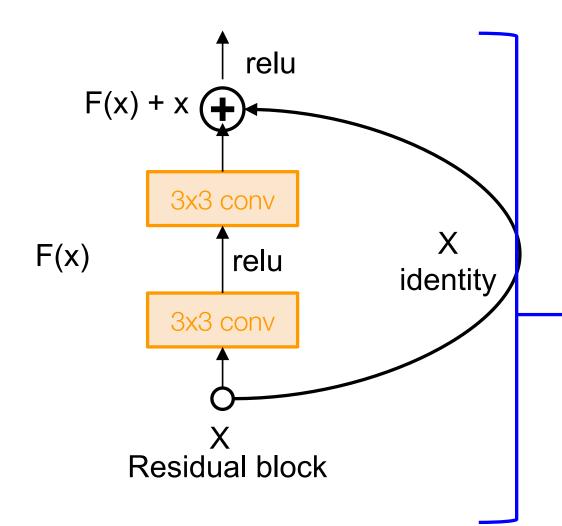
Use layers to fit **residual** F(x) = H(x) - xinstead of H(x) directly

Identity mapping: H(x) = x if F(x) = 0

[He et al., 2015]

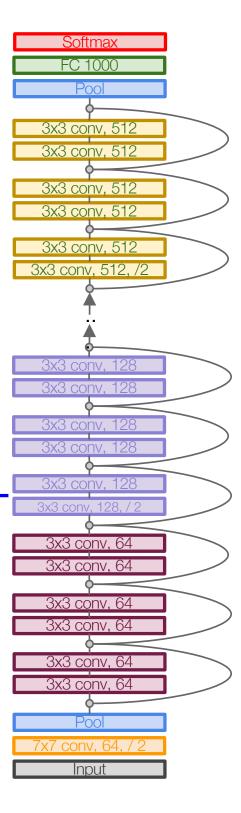
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers



Lecture 6 - 53

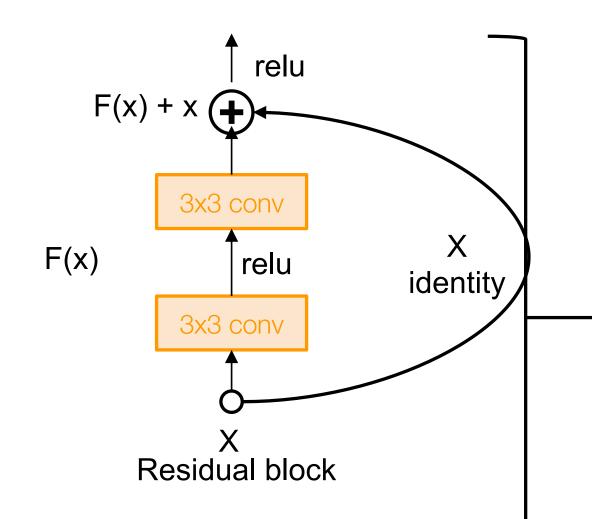
Stanford CS231n 10th Anniversary



[He et al., 2015]

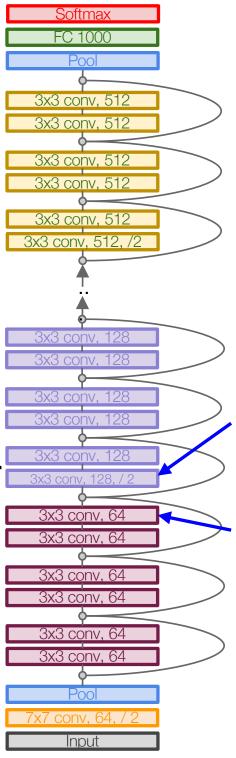
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.



Lecture 6 - 54

Stanford CS231n 10th Anniversary



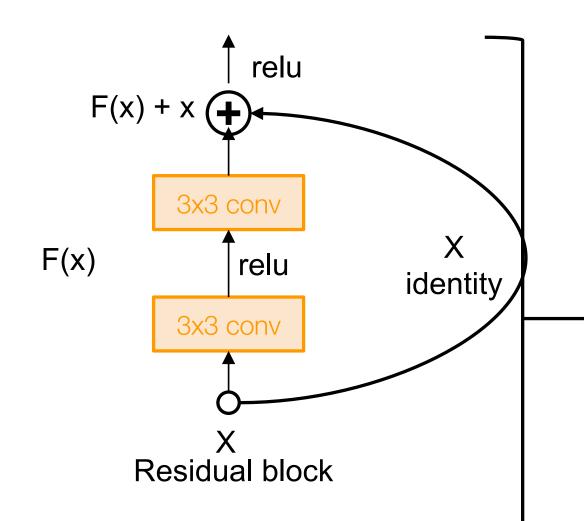
3x3 conv, 128 filters, /2 spatially with stride 2

3x3 conv, 64 filters

[He et al., 2015]

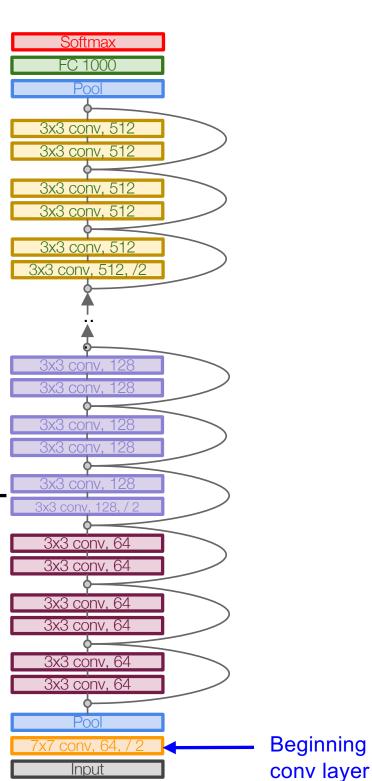
Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning (stem)



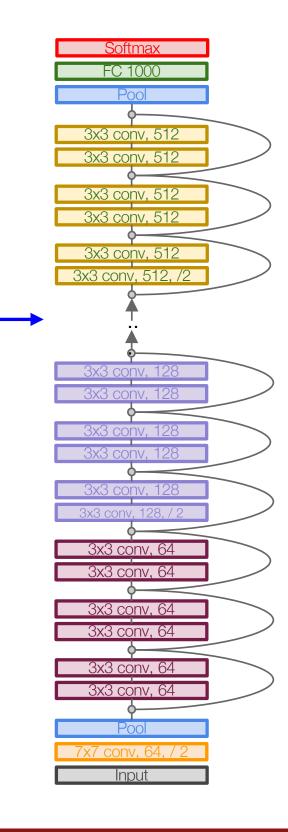
Lecture 6 - 55

Stanford CS231n 10th Anniversary



[He et al., 2015]

Total depths of 18, 34, 50, 101, or 152 layers for ImageNet

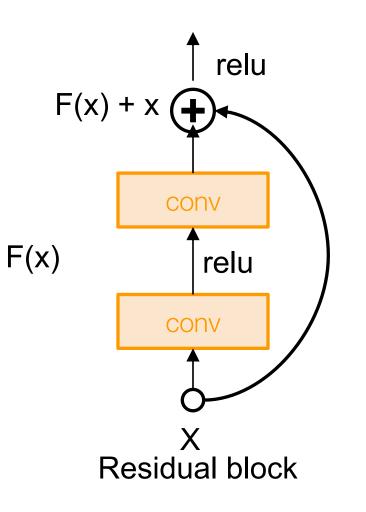


Stanford CS231n 10th Anniversary

[He et al., 2015]

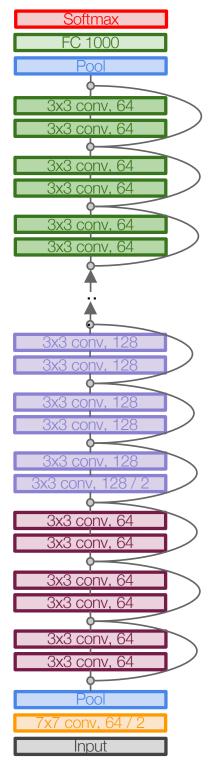
Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!



Lecture 6 - 57

Stanford CS231n 10th Anniversary



Lecture Overview – Two Broad Sets of Topics

How to build CNNs?

Layers in CNNs **Activation Functions CNN Architectures Weight Initialization**

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning **Hyperparameter Selection**

Stanford CS231n 10th Anniversary

How to initialize weights in neural network layers?

Stanford CS231n 10th Anniversary

Weight Initialization Case: Values too small

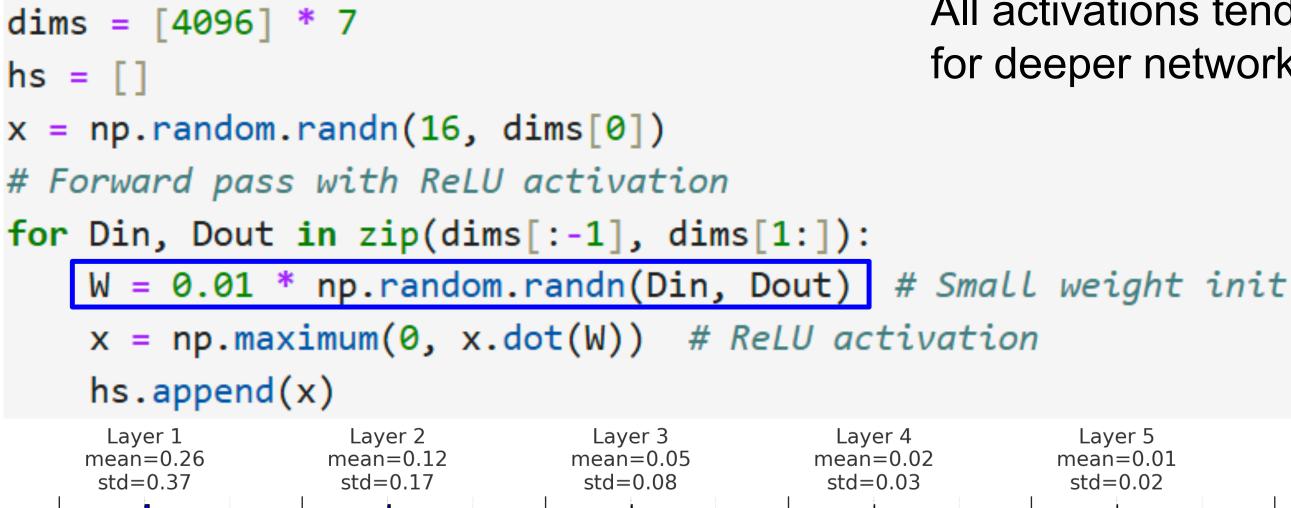
Forward pass for a 6-layer net with hidden size 4096

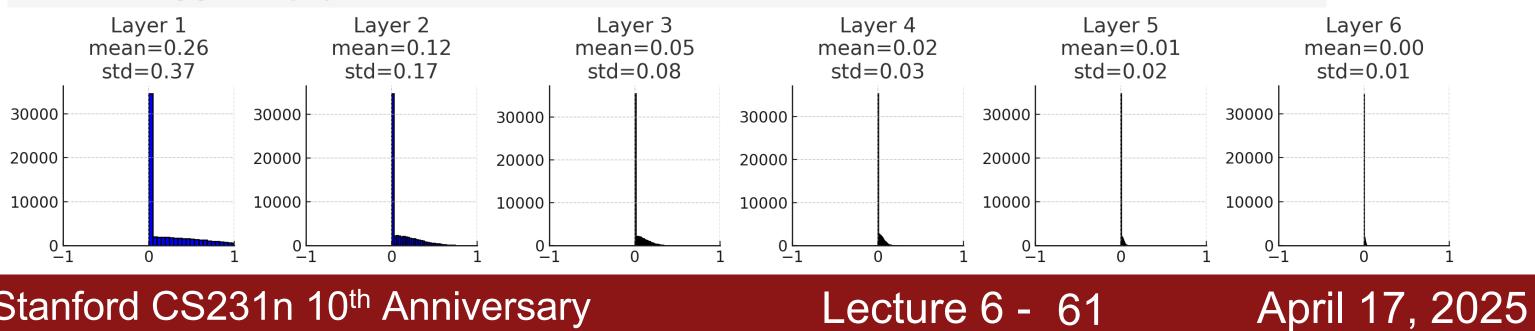
Stanford CS231n 10th Anniversary

Lecture 6 - 60

ght init

Weight Initialization Case: Values too small





Stanford CS231n 10th Anniversary

All activations tend to zero for deeper network layers

Weight Initialization Case: Values too large

- hs = []
- x = np.random.randn(16, dims[0])
- # Forward pass with ReLU activation
- for Din, Dout in zip(dims[:-1], dims[1:]):

W = 0.05 * np.random.randn(Din, Dout)

x = np.maximum(0, x.dot(W)) # ReLU activation
hs.append(x)

Stanford CS231n 10th Anniversary

Increase std of initial weights from 0.01 to 0.05 # Small weight init

Weight Initialization Case: Values too large

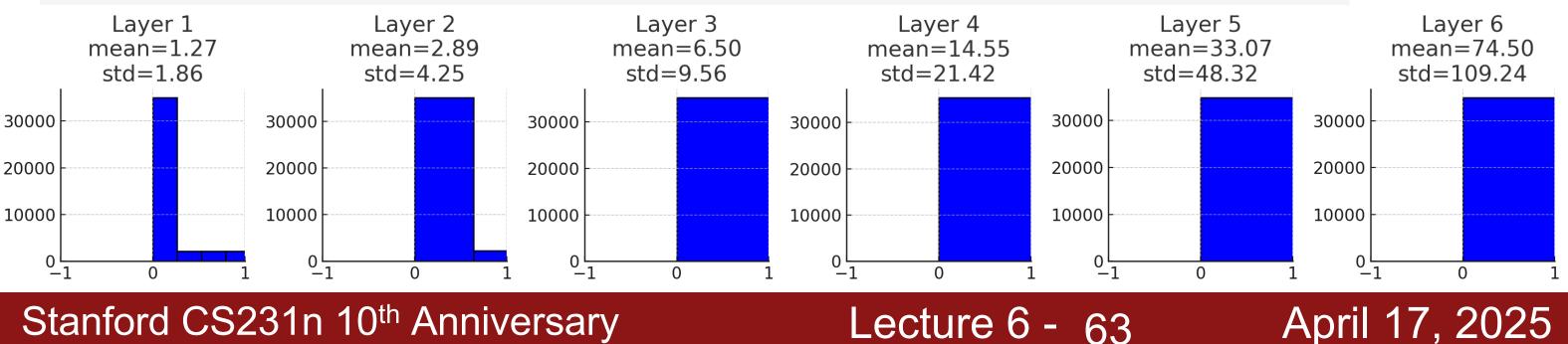
for Din, Dout in zip(dims[:-1], dims[1:]):

np.random.randn(Din, Dout) = 0.05

weights from 0.01 to 0.05

x = np.maximum(0, x.dot(W)) # ReLU activation

hs.append(x)

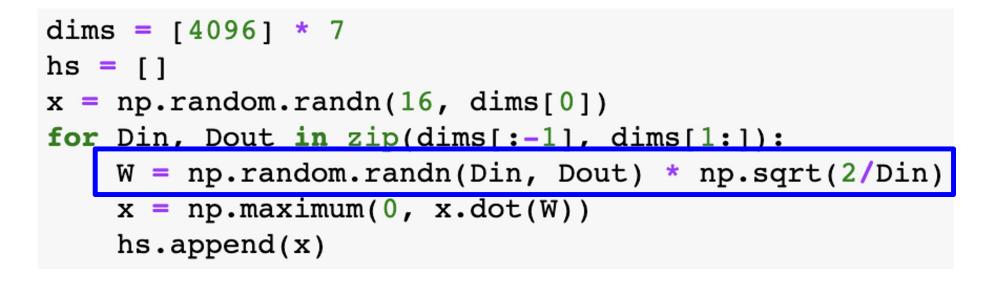


ations blow up quickly

e std of initial # Small weight init

How to fix this? Depends on the size of the layer

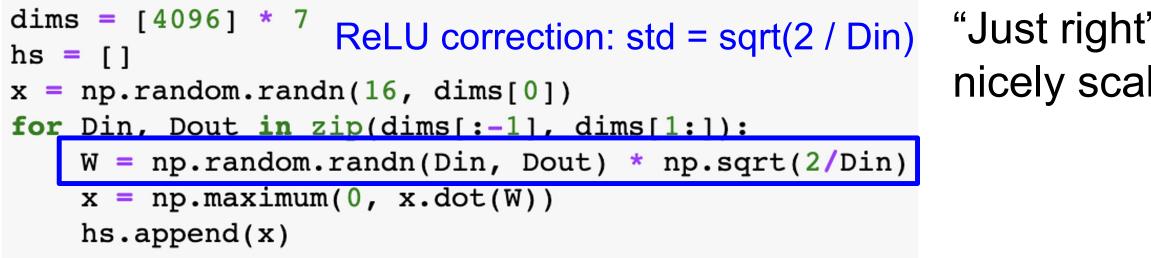
Lecture 6 - 64

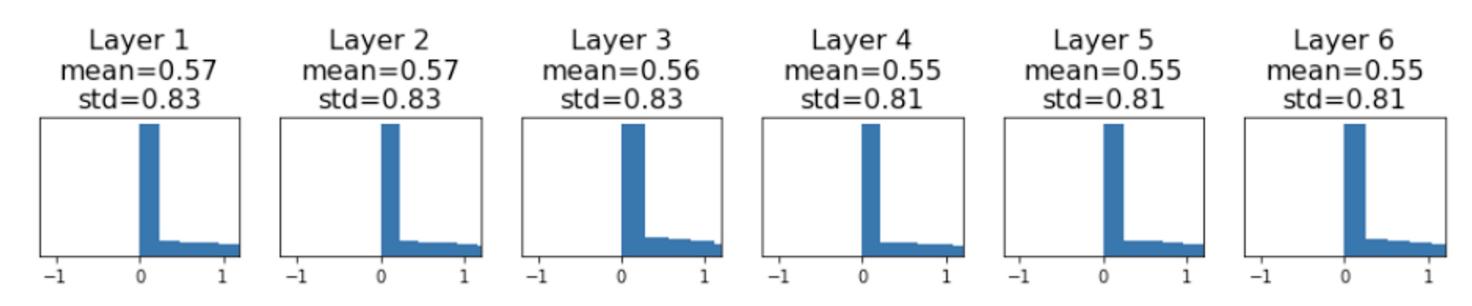


He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

Stanford CS231n 10th Anniversary

One solution: Kaiming / MSRA Initialization





He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

Stanford CS231n 10th Anniversary

Lecture 6 - 65

"Just right": Activations are nicely scaled for all layers!

Lecture Overview – Two Broad Sets of Topics

How to build CNNs?

Layers in CNNs **Activation Functions CNN Architectures** Weight Initialization

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning **Hyperparameter Selection**

Stanford CS231n 10th Anniversary

TLDR for Image Normalization: center and scale for each channel

- Subtract per-channel mean and Divide by per-channel std (almost all modern models) (stats along each channel = 3 numbers)
- Requires pre-computing means and std for each pixel channel (given your dataset)

norm_pixel[i,j,c] = (pixel[i,j,c] - np.mean(pixel[:,:,c])) / np.std(pixel[:,:,c])

Stanford CS231n 10th Anniversary

Lecture Overview – Two Broad Sets of Topics

How to build CNNs?

Layers in CNNs **Activation Functions CNN Architectures** Weight Initialization

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning Hyperparameter Selection

Stanford CS231n 10th Anniversary

Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Stanford CS231n 10th Anniversary

Regularization: A common pattern

Training: Add some kind of randomness

$$y = f_W(x, z)$$
 Rando

Testing: Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Testing: Use all activations and average values with p

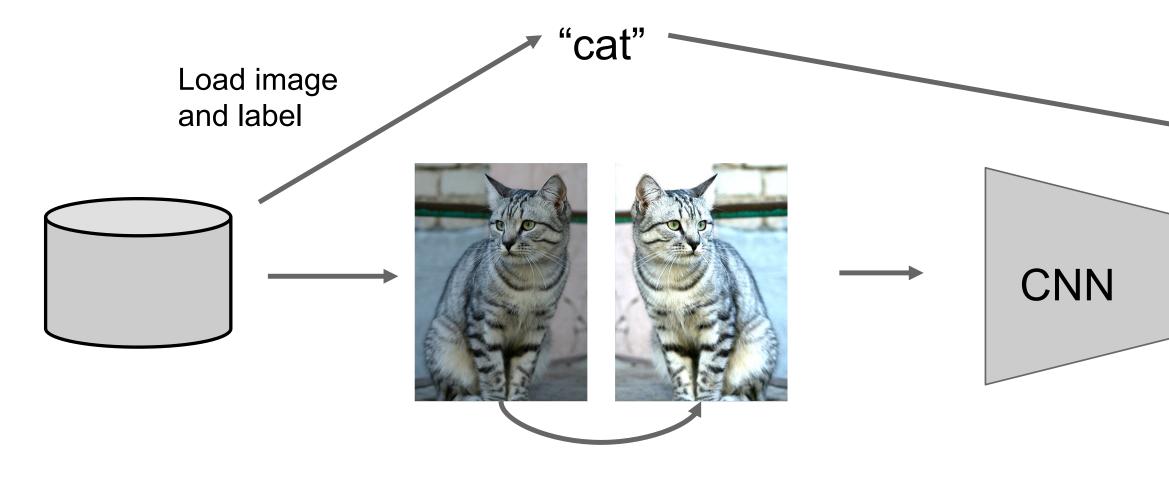
Lecture 6 - 70

Stanford CS231n 10th Anniversary

attern Example: Dropout

Training: Randomly drop activations

Regularization: Data Augmentation



Transform image

Stanford CS231n 10th Anniversary

Lecture 6 - 71

Compute loss

Data Augmentation Horizontal Flips

Stanford CS231n 10th Anniversary

Data Augmentation Random crops and scales

Training: sample random crops / scales **ResNet**:

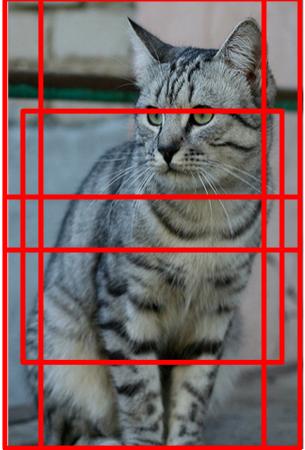
- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Test Time Augmentation: average a fixed set of crops **ResNet**:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Stanford CS231n 10th Anniversary

April 17, 2025



Data Augmentation Color Jitter

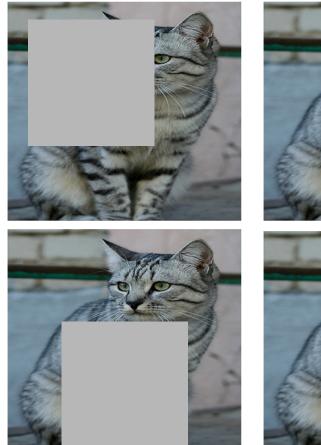
Simple: Randomize contrast and brightness

Stanford CS231n 10th Anniversary

Regularization: Cutout Training: Set random image regions to zero **Testing**: Use full image

Examples:

Dropout Data Augmentation Cutout / Random Crop



Works very well for small datasets like CIFAR, less common for large datasets like ImageNet

DeVries and Taylor, "Improved Regularization of Convolutional Neural Networks with Cutout", arXiv 2017

Stanford CS231n 10th Anniversary

Lecture Overview – Two Broad Sets of Topics

How to build CNNs?

Layers in CNNs **Activation Functions CNN Architectures** Weight Initialization

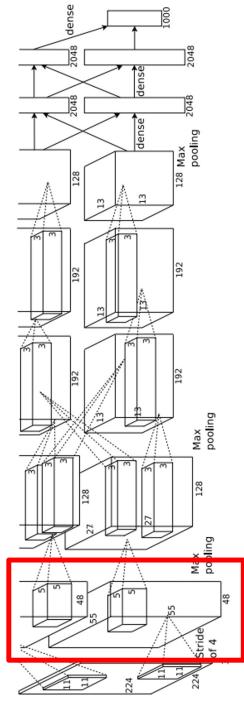
How to train CNNs?

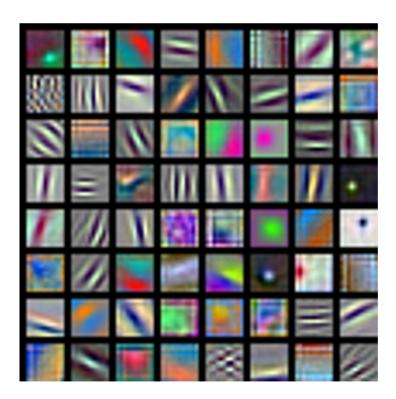
Data Preprocessing Data augmentation Transfer Learning **Hyperparameter Selection**

Stanford CS231n 10th Anniversary

What if you don't have a lot of data? Can you still train CNNs?

Stanford CS231n 10th Anniversary

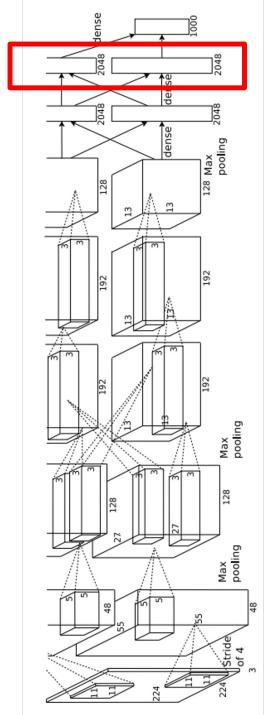




AlexNet: 64 x 3 x 11 x 11

Lecture 6 -

Stanford CS231n 10th Anniversary



L2 Nearest neighbors in <u>feature</u> space Test image

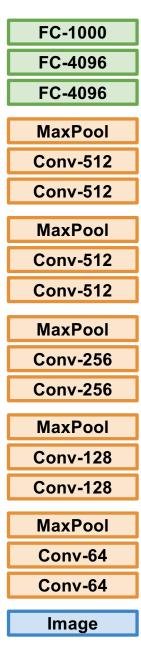
(More on this in Lecture 13)

Lecture 6 -

Stanford CS231n 10th Anniversary

April 17, 2025

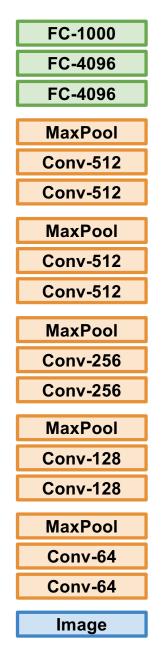
1. Train on Imagenet (or internet scale data)



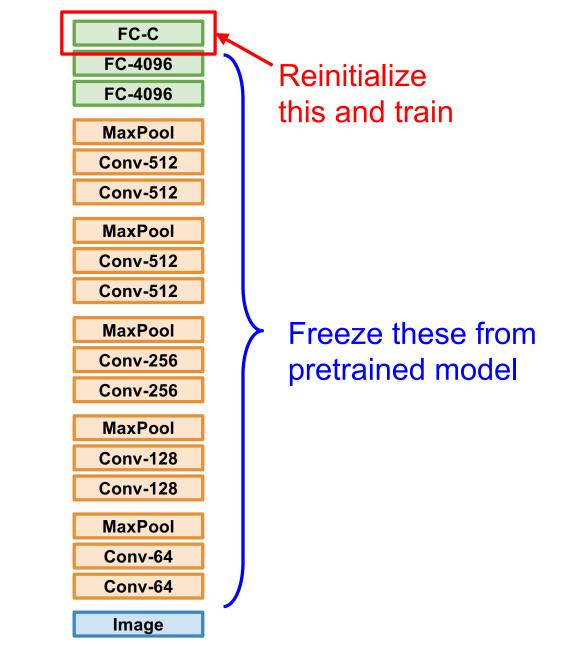
Stanford CS231n 10th Anniversary

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet



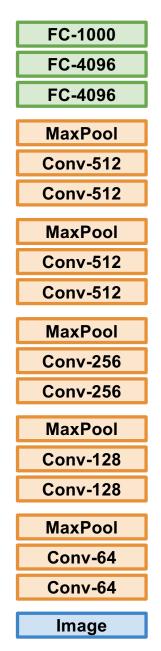
2. Small Dataset (C classes)



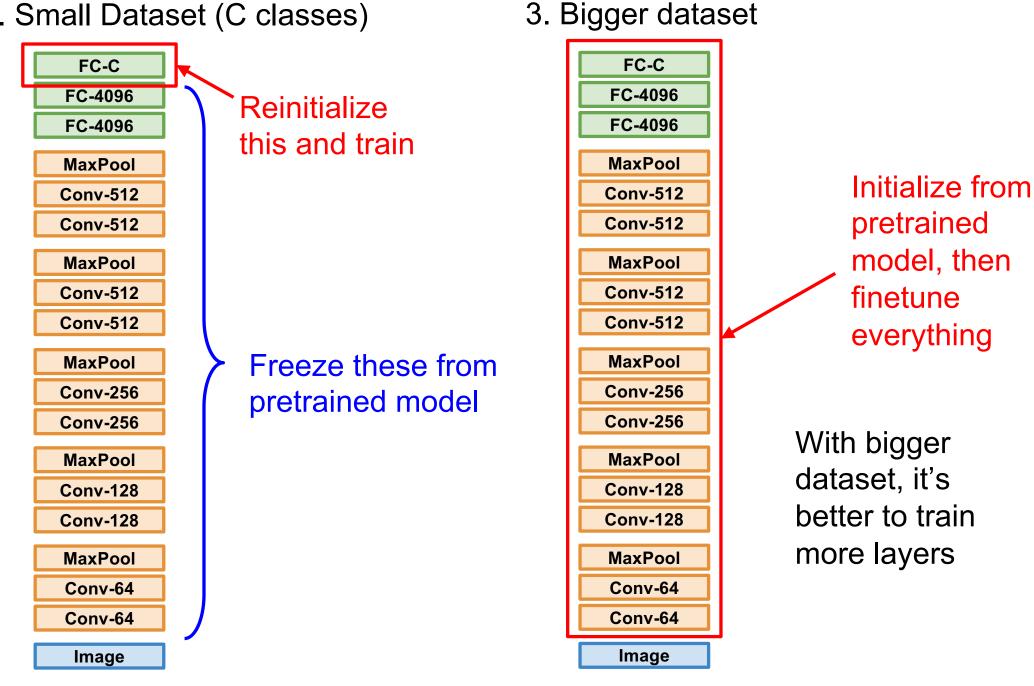
Stanford CS231n 10th Anniversary

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet



2. Small Dataset (C classes)



Lecture 6 -

Stanford CS231n 10th Anniversary

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

April 17, 2025

82

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	?

very different dataset
?
?

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset	very different dataset
Conv-512 Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool	very little data	Use Linear Classifier on final layer	?
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune all model layers	?

FC-1000 FC-4096 FC-4096 MaxPool Conv-512		very similar dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on final layer
Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune all model layers

very different dataset
Try another model or collect more data ⊗
Either finetune all model layers or train from scratch!

Takeaway for your projects and beyond: Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big model there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

PyTorch: <u>https://github.com/pytorch/vision</u> Huggingface: https://github.com/huggingface/pytorch-image-models

Stanford CS231n 10th Anniversary

Lecture Overview – Two Broad Sets of Topics

How to build CNNs?

Layers in CNNs **Activation Functions CNN Architectures Weight Initialization**

How to train CNNs?

Data Preprocessing Data augmentation Transfer Learning **Hyperparameter Selection**

Stanford CS231n 10th Anniversary

Choosing Hyperparameters

Step 1: Check initial loss **Step 2**: Overfit a small sample Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4, 1e-5

Stanford CS231n 10th Anniversary

April 17, 2025 88

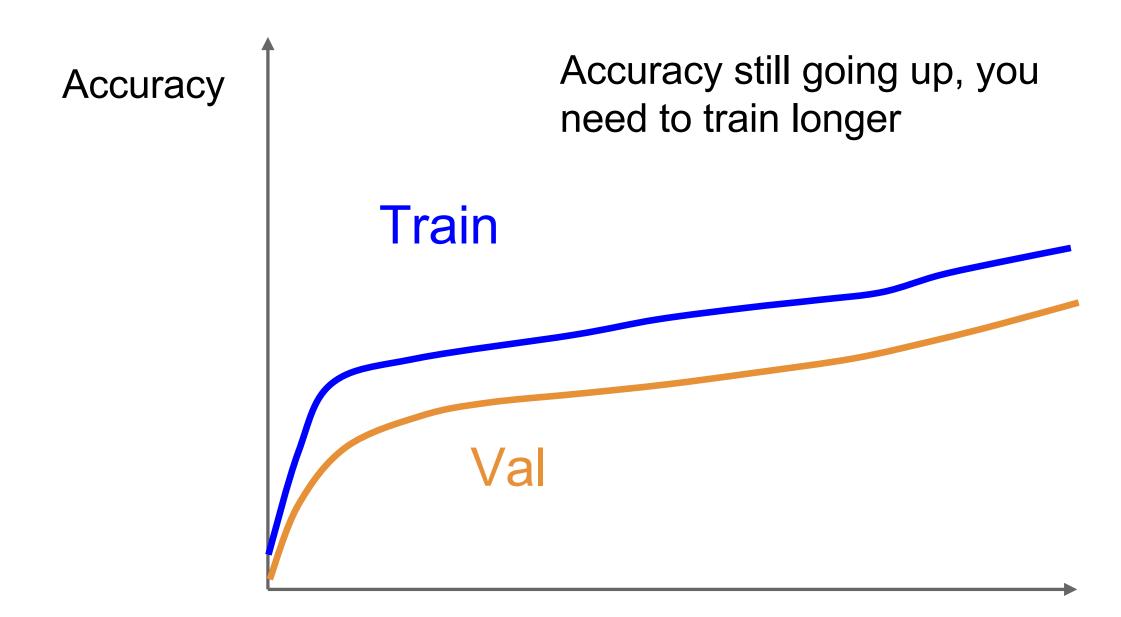
Choosing Hyperparameters

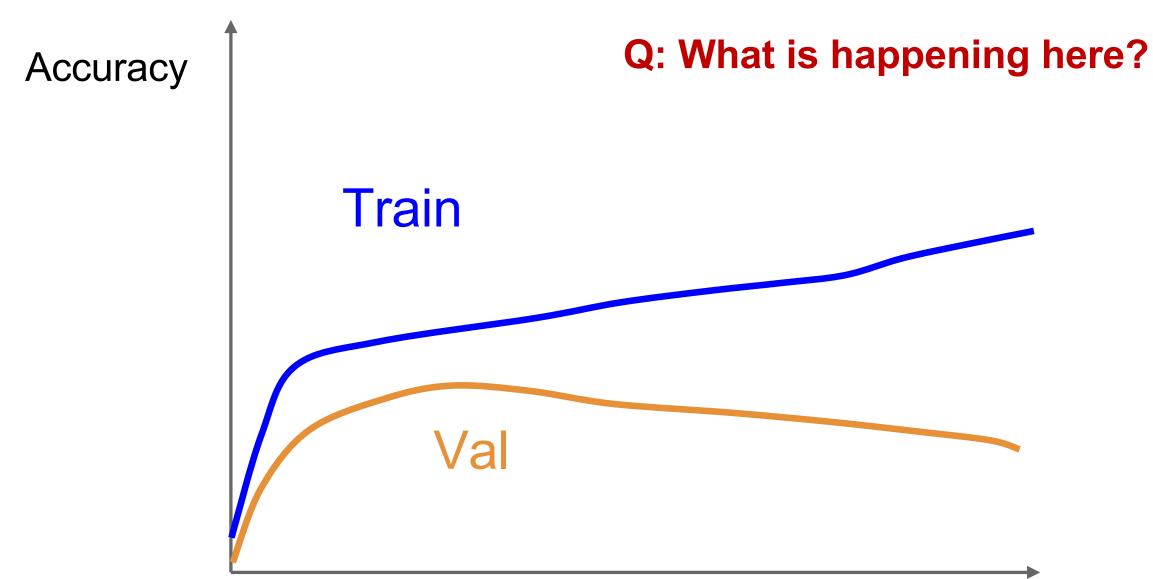
Step 1: Check initial loss

- Step 2: Overfit a small sample
- Step 3: Find LR that makes loss go down
- Step 4: Coarse grid of hyperparams, train for ~1-5 epochs
- Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves (next slides)

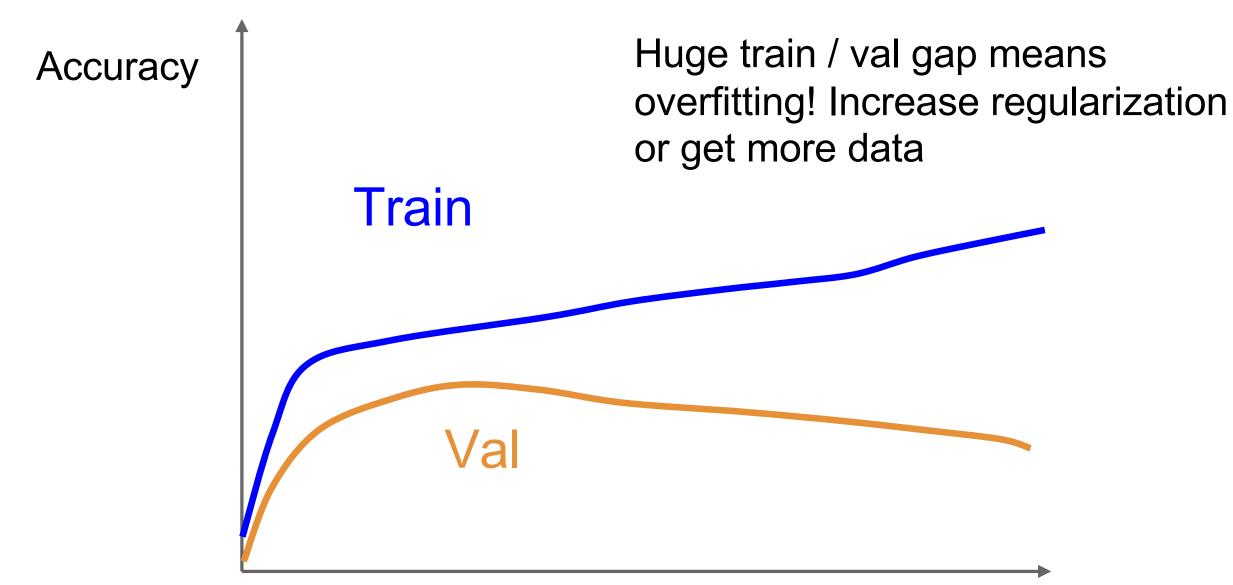
-5 epochs slides)





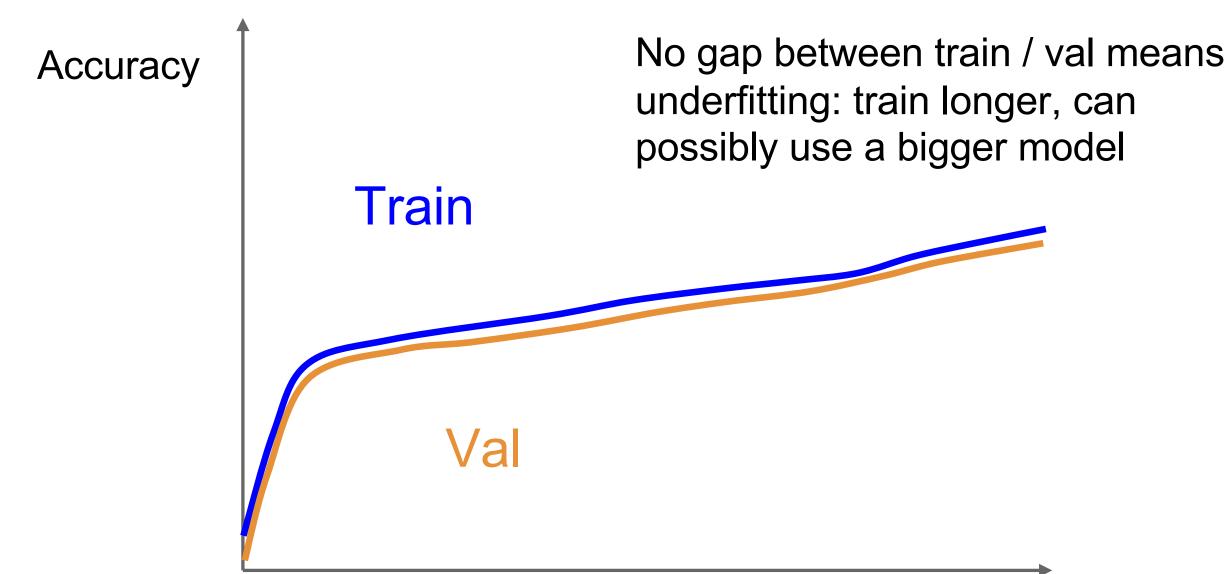
time

Stanford CS231n 10th Anniversary



time

Stanford CS231n 10th Anniversary



time

Stanford CS231n 10th Anniversary

Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

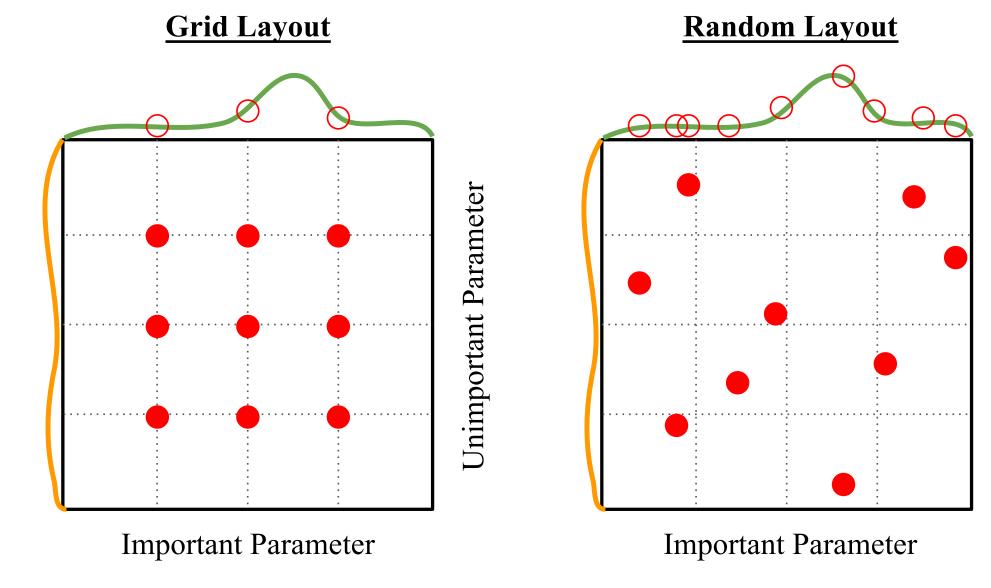


Illustration of Bergstra et al., 2012 by Shayne Longpre, copyright CS231n 2017

Stanford CS231n 10th Anniversary

Lecture 6 - 95

Unimportant Parameter

Summary We reviewed 8 topics at a high level:

- 1. Layers in CNNs (Conv, FC, Norm, Dropout)
- 2. Activation Functions in NNs (ReLU, GELU, etc.)
- 3. CNN Architectures (VGG, ResNets)
- 4. Weight Initialization (Maintain Activation Distribution)

Lecture 6 - 96

ropout) U, GELU, etc.)

Summary We reviewed 8 topics at a high level:

- 5. Data Preprocessing (subtract mean, divide std)
- 6. Data augmentation (cropping, jitter)
- 7. Transfer Learning (train on ImageNet first)
- 8. Hyperparameter (Checking Losses + Random Search)

