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Lecture 8:
Attention and Transformers
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Administrative

● Assignment 2 released yesterday (4/23)
● Project proposals are due tomorrow (4/25)
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Last Time: Recurrent Neural Networks
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Today: Attention + Transformers

4

Attention: A new primitive that 

operates on sets of vectors

Transformer: A neural 

network architecture that 

uses attention everywhere
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Today: Attention + Transformers

5

Attention: A new primitive that 

operates on sets of vectors

Transformers are used 

everywhere today!

But they developed as 

an offshoot of RNNs 
so let’s start there

Transformer: A neural 

network architecture that 

uses attention everywhere
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x1 x2 x3

h1 h2 h3

x4

h4

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Sequence to Sequence with RNNs: Encoder - Decoder

6

A motivating example for today’s discussion –

machine translation! English → Italian

we see the sky
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x1 x2 x3

h1 h2 h3 s0

x4

h4

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

7

we see the sky
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s1

x1 x2 x3

h1 h2 h3 s0

[START]

y0

y1

x4

h4

vediamo

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs
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we see the sky
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s1

x1

we see the

x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

sky

x4

h4

vediamo

vediamo

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

9

il
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s1

x1 x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

x4

h4

vediamo il

cielo

y2 y3

vediamo il

s3 s4

y3 y4

cielo [STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

10

we see the sky
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s1

x1 x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

x4

h4

y2 y3

s3 s4

y3 y4

[STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

11

Problem: Input sequence 

bottlenecks through fixed 

sized c. What if T=1000?

we see the sky cielovediamo il

vediamo il cielo
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s1

x1 x2 x3

h1 h2 h3 s0 s2

[START]

y0 y1

y1 y2

x4

h4

y2 y3

s3 s4

y3 y4

[STOP]

c

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt-1, st-1, c)

From final hidden state predict:

Initial decoder state s0

Context vector c (often c=hT)

Sequence to Sequence with RNNs

12

Solution: Look back at the 

whole input sequence on 

each step of the output

we see the sky cielovediamo il

vediamo il cielo
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x1 x2 x3

h1 h2 h3 s0

x4

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Input: Sequence x1, … xT

Output: Sequence y1, …, yT’

Encoder: ht = fW(xt, ht-1)
From final hidden state: 

Initial decoder state s0

Sequence to Sequence with RNNs and Attention

13

we see the sky
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x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores

et,i = fatt(st-1, hi)        (fatt is a Linear Layer)

Sequence to Sequence with RNNs and Attention

From final hidden state: 

Initial decoder state s0

14

we see the sky
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x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Normalize alignment scores 

to get attention weights

0 < at,i < 1    ∑iat,i = 1

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

15

Compute (scalar) alignment scores

et,i = fatt(st-1, hi)        (fatt is a Linear Layer)

From final hidden state: 

Initial decoder state s0

we see the sky
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x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

vediamo

Compute context vector as 

weighted sum of hidden 

states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

From final hidden state: 

Initial decoder state s0

16

Compute (scalar) alignment scores

et,i = fatt(st-1, hi)        (fatt is a Linear Layer)

Normalize alignment scores 

to get attention weights

0 < at,i < 1    ∑iat,i = 1

we see the sky
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x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

Compute context vector as 

weighted sum of hidden 

states

ct = ∑iat,ihi

Use context vector in 

decoder: st = gU(yt-1, st-1, ct) 

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

Sequence to Sequence with RNNs and Attention

From final hidden state: 

Initial decoder state s0

17

Normalize alignment scores 

to get attention weights

0 < at,i < 1    ∑iat,i = 1

Compute (scalar) alignment scores

et,i = fatt(st-1, hi)        (fatt is a Linear Layer)

we see the sky

vediamo

gU is an RNN unit 

(e.g. LSTM, GRU)
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x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

Compute context vector as 

weighted sum of hidden 

states

ct = ∑iat,ihi

Use context vector in 

decoder: st = gU(yt-1, st-1, ct) 

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

Sequence to Sequence with RNNs and Attention

Intuition: Context 

vector attends to the 

relevant part of the 

input sequence

“vediamo” = “we see”

so maybe a11=a12=0.45,

a13=a14=0.05

From final hidden state: 

Initial decoder state s0

18

Normalize alignment scores 

to get attention weights

0 < at,i < 1    ∑iat,i = 1

Compute (scalar) alignment scores

et,i = fatt(st-1, hi)        (fatt is a Linear Layer)

we see the sky

vediamo
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x1 x2 x3

h1 h2 h3 s0

x4

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

Compute context vector as 

weighted sum of hidden 

states

ct = ∑iat,ihi

Use context vector in 

decoder: st = gU(yt-1, st-1, ct) 

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

Sequence to Sequence with RNNs and Attention

Intuition: Context 

vector attends to the 

relevant part of the 

input sequence

“vediamo” = “we see”

so maybe a11=a12=0.45,

a13=a14=0.05

From final hidden state: 

Initial decoder state s0

19

Normalize alignment scores 

to get attention weights

0 < at,i < 1    ∑iat,i = 1

Compute (scalar) alignment scores

et,i = fatt(st-1, hi)        (fatt is a Linear Layer)

we see the sky

vediamo

All differentiable! No 

supervision on attention 

weights. Backprop 

through everything
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x1 x2 x3

h1 h2 h3 s0

x4

h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Repeat: Use s1 to compute 

new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

20

Compute new alignment 

scores e2,i and attention 

weights a2,i

we see the sky

vediamo



Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 -

x1 x2 x3

h1 h2 h3 s0

x4

h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Repeat: Use s1 to compute 

new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

21

s2

y2

il

y1

Use context vector 

in decoder: st = 

gU(yt-1, st-1, ct) 

we see the sky

vediamo

vediamo
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x1 x2 x3

h1 h2 h3 s0

x4

h4 s1

[START]

y0

y1

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Repeat: Use s1 to compute 

new context vector c2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Sequence to Sequence with RNNs and Attention

22

s2

y2

y1

Use context vector 

in decoder: st = 

gU(yt-1, st-1, ct) 

Intuition: Context vector 

attends to the relevant 

part of the input sequence

“il” = “the”

so maybe a21=a22=0.05,

a24=0.1, a23=0.8

we see the sky

ilvediamo

vediamo
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x1 x2 x3

h1 h2 h3 s0

x4

h4 s1 s2

[START]

y0

y1 y2

s3 s4

y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at” 

different parts of the input sequence

Sequence to Sequence with RNNs and Attention

23

we see the sky

cielovediamo il

vediamo il cielo
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to 

French translation
Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

24

x1 x2 x3

h1 h2 h3

x4

h4

e21 e22 e23 e24

softmax

a21 a22 a23 a24

we see the sky
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to 

French translation
Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

25

Input: “The agreement on the 

European Economic Area was 

signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a été 

signé en août 1992.”
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Visualize attention weights at,i

Sequence to Sequence with RNNs and Attention

26

Input: “The agreement on the

European Economic Area was 

signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a été 

signé en août 1992.”

Example: English to 

French translation

Diagonal attention 

means words 

correspond in order

Diagonal attention 

means words 

correspond in order
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Visualize attention weights at,i

Diagonal attention 

means words 

correspond in order

Sequence to Sequence with RNNs and Attention

27

Input: “The agreement on the

European Economic Area was 

signed in August 1992.”

Output: “L’accord sur la zone 
économique européenne a été 

signé en août 1992.”

Example: English to 

French translation

Attention figures 

out other word 

orders

Diagonal attention 

means words 

correspond in order
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x1 x2 x3

h1 h2 h3 s0

x4

h4 s1 s2

[START]

y0

y1 y2

s3 s4

y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

we see the sky

cielovediamo il

vediamo il cielo

Sequence to Sequence with RNNs and Attention

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

There’s a general 

operator hiding here:
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x1 x2 x3

h1 h2 h3 s0

x4

h4 s1 s2

[START]

y0

y1 y2

s3 s4

y3 y4

[STOP]

c1 y1c2 y2c3 y3c4

we see the sky

cielovediamo il

vediamo il cielo

Sequence to Sequence with RNNs and Attention
Query vectors (decoder RNN states) and

data vectors (encoder RNN states)

get transformed to

output vectors (Context states).

Each query attends to all data vectors and 

gives one output vector

There’s a general 

operator hiding here:
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Attention Layer
Inputs: 

Query vector: q [DQ]
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]  ei = fatt(q, Xi)
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]  ei = fatt(q, Xi)

Attention weights: a = softmax(e)  [NX]
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]  ei = fatt(q, Xi)

Attention weights: a = softmax(e)  [NX]

Output vector: y = ∑iaiXi [DX]
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]  ei = fatt(q, Xi)

Attention weights: a = softmax(e)  [NX]

Output vector: y = ∑iaiXi [DX]
Let’s generalize this!
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]   ei = q · Xi

Attention weights: a = softmax(e)  [NX]

Output vector: y = ∑iaiXi [DX]

Changes

- Use dot product for similarity
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]   ei = q · Xi / 𝐷𝑄
Attention weights: a = softmax(e)  [NX]

Output vector: y = ∑iaiXi [DX]

Changes

- Use scaled dot product for similarity
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Attention Layer
Inputs: 

Query vector: q [DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: e [NX]   ei = q · Xi / 𝐷𝑄
Attention weights: a = softmax(e)  [NX]

Output vector: y = ∑iaiXi [DX]

Changes

- Use scaled dot product for similarity

Large similarities will cause softmax to 

saturate and give vanishing gradients
Recall a · b = |a||b| cos(angle)
Suppose that a and b are constant 

vectors of dimension D

Then |a| = (∑ia
2)1/2 = a 𝐷
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Computation:

Similarities: E = QXT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Xj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AX [NQ x DX]

Yi = ∑jAijXj

Changes

- Use scaled dot product for similarity

- Multiple query vectors
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj

Changes

- Use scaled dot product for similarity

- Multiple query vectors

- Separate key and query
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj
Q1

X1

X2

X3

Q2 Q3 Q4
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj
Q1

X1

X2

X3

K1

K2

K3

V1

V2

V3

Q2 Q3 Q4
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj
Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

V1

V2

V3

Q2 Q3 Q4
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj

Softmax(    )

Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Q2 Q3 Q4

Softmax normalizes each 

column: each query predicts 
a distribution over the keys
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Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj

Softmax(    )

Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product(     ),   Sum(    )

Q2 Q3 Q4

Y1 Y2 Y3 Y4Each output is a linear 

combination of all values,
weighted by attention weights
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Cross-Attention Layer
Inputs: 

Query vector: Q [NQ x DQ]

Data vectors: X [NX x DX]

Key matrix: WK [DX x DQ]

Value matrix: WV [DX x DV]

Computation:

Keys:    K = XWK   [NX x DQ]

Values: V = XWV   [DX x DV]

Similarities: E = QKT / 𝐷𝑄 [NQ x NX]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [NQ x NX]

Output vector: Y = AV [NQ x DX]

Yi = ∑jAijVj

Softmax(    )

Q1

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Product(     ),   Sum(    )

Q2 Q3 Q4

Y1 Y2 Y3 Y4

Each query produces 

one output, which is a 
mix of information in 
the data vectors
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

47

Self-Attention Layer

Each input produces 

one output, which is 
a mix of information 
from all inputs

Softmax(    )

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(     ), Sum(   )

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

Shapes get a little simpler:

- N input vectors, each Din

- Almost always DQ = DV = Dout
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

48

Self-Attention Layer

Each input produces 

one output, which is 
a mix of information 
from all inputs

K1

K2

K3

V1

V2

V3

Q1 Q2 Q3

X1 X2 X3

From each input: 

compute a query, 
key, and value vector

Often fused to one matmul:

[Q K V] = X[WQ WK WV]
[N x 3Din] = [N x Din] [Din x 3Dout]
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

49

Self-Attention Layer

Each input produces 

one output, which is 
a mix of information 
from all inputs

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

V1

V2

V3

Q1 Q2 Q3

X1 X2 X3

Compute similarity 

between each query
and each key
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

50

Self-Attention Layer

Each input produces 

one output, which is 
a mix of information 
from all inputs

Softmax(    )

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Q1 Q2 Q3

X1 X2 X3

Normalize over each column: 

each query computes a 
distribution over keys
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

51

Self-Attention Layer

Each input produces 

one output, which is 
a mix of information 
from all inputs

Softmax(    )

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(     ), Sum(   )

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

Compute output

vectors as linear 
combinations of 
value vectors
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

52

Self-Attention Layer

Softmax(    )

Product(     ), Sum(   )

X3 X1 X2

Consider permuting inputs:
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

53

Self-Attention Layer

Softmax(    )

K3

K1

K2

V3

V1

V2

Product(     ), Sum(   )

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

54

Self-Attention Layer

Softmax(    )

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

V3

V1

V2

Product(     ), Sum(   )

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but 

permuted
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

55

Self-Attention Layer

Softmax(    )

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

A3,3 A1,3

A3,1

A3,2

A1,1

A1,2 A2,2

A2,1

A2,3V3

V1

V2

Product(     ), Sum(   )

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but 

permuted

Attention weights are the 

same but permuted
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

56

Self-Attention Layer

Softmax(    )

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

A3,3 A1,3

A3,1

A3,2

A1,1

A1,2 A2,2

A2,1

A2,3V3

V1

V2

Product(     ), Sum(   )

Y1 Y2 Y3

Q3 Q1 Q2

X3 X1 X2

Consider permuting inputs:

Queries, keys, and values
will be the same but permuted

Similarities are the same but 

permuted

Attention weights are the 

same but permuted

Outputs are the same but 
permuted
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

57

Self-Attention Layer

Softmax(    )

K3

K1

K2

E3,3 E1,3

E3,1

E3,2

E1,1

E1,2 E2,2

E2,1

E2,3

A3,3 A1,3

A3,1

A3,2

A1,1

A1,2 A2,2

A2,1

A2,3V3

V1

V2

Product(     ), Sum(   )

Y1 Y2 Y3

Q3 Q1 Q2

X3 X1 X2

Self-Attention is 

permutation equivariant: 

F(σ(X)) = σ(F(X))

This means that Self-Attention 
works on sets of vectors
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

58

Self-Attention Layer

Softmax(    )

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(     ), Sum(   )

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

Problem: Self-Attention 

does not know the order of 

the sequence
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

59

Self-Attention Layer

Problem: Self-Attention 

does not know the order of 

the sequence

Solution: Add positional 

encoding to each input; this 

is a vector that is a fixed 

function of the index

Softmax(    )

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(     ), Sum(   )

Y1 Y2 Y3

Q1 Q2 Q3

X1 X2 X3

E(1) E(2) E(3)
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

60

Masked Self-Attention Layer

Override similarities with -inf; 

this controls which inputs each 

vector is allowed to look at.

Softmax(    )

K1

K2

K3

-∞ -∞

-∞

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

0 0

0

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(     ), Sum(   )

Q1 Q2 Q3

Don’t let vectors “look ahead” in the sequence

Y1 Y2 Y3

X1 X2 X3
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AV [N x Dout]

Yi = ∑jAijVj

61

Masked Self-Attention Layer

Override similarities with -inf; 

this controls which inputs each 

vector is allowed to look at.

Used for language modeling 

where you want to predict the 

next word

Softmax(    )

K1

K2

K3

-∞ -∞

-∞

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

0 0

0

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1V1

V2

V3

Product(     ), Sum(   )

Q1 Q2 Q3

Don’t let vectors “look ahead” in the sequence

Attention is very

is very cool
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

62

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

63

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

H = 3 independent 

self-attention layers 

(called heads), each 

with their own weights
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

64

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

H = 3 independent 

self-attention layers 

(called heads), each 

with their own weights

Stack up the H 

independent outputs 

for each input X
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Inputs: 

Input vectors: X [N x Din]

Key matrix: WK [Din x Dout]

Value matrix: WV [Din x Dout]

Query matrix: WQ [Din x Dout]

Computation:

Queries: Q = XWQ [N x Dout]

Keys:      K = XWK   [N x Dout]

Values:   V = XWV   [N x Dout]

Similarities: E = QKT / 𝐷𝑄 [N x N]

Eij = Qi·Kj / 𝐷𝑄
Attention weights: A = softmax(E, dim=1)  [N x N]

Output vector: Y = AX [N x Dout]

Yi = ∑jAijVj

65

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

O1 O2 O3

H = 3 independent 

self-attention layers 

(called heads), each 

with their own weights

Stack up the H 

independent outputs 

for each input X

Output projection fuses 

data from each head
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

66

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

O1 O2 O3

Each of the H parallel 

layers use a qkv dim of 

DH = “head dim”

Usually DH = D / H, so 

inputs and outputs have 

the same dimension
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

67

Multiheaded Self-Attention Layer
Run H copies of Self-Attention in parallel

X1 X2 X3

Y1,1

Y1,2

Y1,3

Y2,1

Y2,2

Y2,3

Y3,1

Y3,2

Y3,3

O1 O2 O3

In practice, compute 

all H heads in parallel 

using batched matrix 

multiply operations.

Used everywhere in 

practice.
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

68

Self-Attention is Four Matrix Multiplies!
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

69

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

70

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

71

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

72

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

73

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much compute does this take 

as the number of vectors N increases?
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

74

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much compute does this take 

as the number of vectors N increases?
A: O(N2)
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

75

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take 

as the number of vectors N increases?
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

76

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take 

as the number of vectors N increases?
A: O(N2)
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

77

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take 

as the number of vectors N increases?
A: O(N2)

If N=100K, H=64 then 

HxNxN attention weights 
take 1.192 TB! GPUs don’t 
have that much memory…
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Inputs: 

Input vectors: X [N x D]

Key matrix: WK [D x HDH]

Value matrix: WV [D x HDH]

Query matrix: WQ [D x HDH]

Output matrix: WO [HDH x D]

Computation:

Queries: Q = XWQ [H x N x DH]

Keys:      K = XWK   [H x N x DH]

Values:   V = XWV   [H x N x DH]

Similarities: E = QKT / 𝐷𝑄 [H x N x N]

Attention weights: A = softmax(E, dim=1)  [H x N x N]

Head outputs: Y = AV [H x N x DH] => [N x HDH]

Outputs: O = YWO [N x D]

78

Self-Attention is Four Matrix Multiplies!

1. QKV Projection

[N x D] [D x 3HDH] => [N x 3HDH]

Split and reshape to get Q, K, V each of 

shape [H x N x DH]

2. QK Similarity

[H x N x DH] [H x N x DH] => [H x N x N]

3. V-Weighting

[H x N x N] [H x D x DH] => [H x N x DH]

Reshape to [N x HDH]

4. Output Projection

[N x HDH] [HDH x D] => [N x D]

Q: How much memory does this take 

as the number of vectors N increases?
A: O(N) with Flash Attention

If N=100K, H=64 then 

HxNxN attention weights 
take 1.192 TB! GPUs don’t 
have that much memory…

Dao et al, “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”, 2022

Flash Attention 

algorithm computes 
2+3 at the same time 
without storing the 

full attention matrix!

Makes large N 
possible
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Three Ways of Processing Sequences
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Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

Recurrent Neural Network

Works on 1D ordered sequences

(+) Theoretically good at long 
sequences: O(N) compute and 

memory for a sequence of length N
(-) Not parallelizable. Need to 

compute hidden states sequentially
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Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Recurrent Neural Network Convolution

Works on 1D ordered sequences

(+) Theoretically good at long 
sequences: O(N) compute and 

memory for a sequence of length N
(-) Not parallelizable. Need to 

compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to 
stack many layers to build up large 

receptive fields
(+) Parallelizable, outputs can be 

computed in parallel
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Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network Convolution Self-Attention

Works on 1D ordered sequences

(+) Theoretically good at long 
sequences: O(N) compute and 

memory for a sequence of length N
(-) Not parallelizable. Need to 

compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to 
stack many layers to build up large 

receptive fields
(+) Parallelizable, outputs can be 

computed in parallel

Works on sets of vectors

(+) Great for long sequences; each 
output depends directly on all inputs

(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N) 

memory for sequence of length N
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Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network Convolution Self-Attention

Works on 1D ordered sequences

(+) Theoretically good at long 
sequences: O(N) compute and 

memory for a sequence of length N
(-) Not parallelizable. Need to 

compute hidden states sequentially

Works on N-dimensional grids

(-) Bad for long sequences: need to 
stack many layers to build up large 

receptive fields
(+) Parallelizable, outputs can be 

computed in parallel

Works on sets of vectors

(+) Great for long sequences; each 
output depends directly on all inputs

(+) Highly parallel, it’s just 4 matmuls
(-) Expensive: O(N2) compute, O(N) 

memory for sequence of length N

Attention is All You Need
Vaswani et al, NeurIPS 2017
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x1 x2 x3 x4

The Transformer

Transformer Block

Input: Set of vectors x

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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x1 x2 x3 x4

Self-Attention

The Transformer

Transformer Block

Input: Set of vectors x

All vectors interact through 

(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

Residual connection

x1 x2 x3 x4

Self-Attention

+

All vectors interact through 

(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization 

normalizes all vectors

x1 x2 x3 x4

Self-Attention

Layer Normalization

+

Recall Layer Normalization:

Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)

𝜇i = (∑j hi,j)/D                 (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2/D)1/2 (scalar)

zi = (hi - 𝜇i) / 𝜎i

yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Residual connection

All vectors interact through 

(multiheaded) Self-Attention

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

x1 x2 x3 x4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer normalization 

normalizes all vectors

Residual connection

All vectors interact through 

(multiheaded) Self-Attention

MLP independently 

on each vector

Usually a two-layer MLP; 

classic setup is
D => 4D => D

Also sometimes called FFN 
(Feed-Forward Network)

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization 

normalizes all vectors

Residual connection

All vectors interact through 

(multiheaded) Self-Attention

x1 x2 x3 x4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

+
MLP independently 

on each vector

Residual connection

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x

Layer normalization 

normalizes all vectors

Residual connection

All vectors interact through 

(multiheaded) Self-Attention

MLP independently 

on each vector

Residual connection

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Another Layer Norm

Vaswani et al, “Attention is all you need,” NeurIPS 2017



Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 91

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only 

interaction between vectors

LayerNorm and MLP work on 

each vector independently

Highly scalable and 
parallelizable, most of the 
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017
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The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only 

interaction between vectors

LayerNorm and MLP work on 

each vector independently

Highly scalable and 
parallelizable, most of the 
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of 

identical Transformer blocks!

They have not changed much since 

2017… but have gotten a lot bigger
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The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only 

interaction between vectors

LayerNorm and MLP work on 

each vector independently

Highly scalable and 
parallelizable, most of the 
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of 

identical Transformer blocks!

They have not changed much since 

2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params
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The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only 

interaction between vectors

LayerNorm and MLP work on 

each vector independently

Highly scalable and 
parallelizable, most of the 
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of 

identical Transformer blocks!

They have not changed much since 

2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]

48 blocks, D=1600, H=25, N=1024
1.5B params
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The Transformer

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only 

interaction between vectors

LayerNorm and MLP work on 

each vector independently

Highly scalable and 
parallelizable, most of the 
compute is just 6 matmuls:

4 from Self-Attention

2 from MLP

Vaswani et al, “Attention is all you need,” NeurIPS 2017

A Transformer is just a stack of 

identical Transformer blocks!

They have not changed much since 

2017… but have gotten a lot bigger

Original: [Vaswani et al, 2017]
12 blocks, D=1024, H=16, N=512
213M params

GPT-2: [Radford et al, 2019]

48 blocks, D=1600, H=25, N=1024
1.5B params

GPT-3: [Brown et al, 2020]
96 blocks, D=12288, H=96, N=2048

175B params
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Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of 

the model to convert words into vectors.

Given vocab size V and model dimension 

D, it’s a lookup table of shape [V x D]
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Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of 

the model to convert words into vectors.

Given vocab size V and model dimension 

D, it’s a lookup table of shape [V x D]

Use masked attention inside each 
transformer block so each token can only 
see the ones before it



Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 98

Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of 

the model to convert words into vectors.

Given vocab size V and model dimension 

D, it’s a lookup table of shape [V x D]

Use masked attention inside each 
transformer block so each token can only 
see the ones before it

At the end, learn a projection matrix of 

shape [D x V] to project each D-dim 
vector to a V-dim vector of scores for 
each element of the vocabulary.

Projection Matrix

[D x V]

is all you need
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Transformers for Language Modeling (LLM)

Attention is all you

Embedding Matrix

[V x D]

Learn an embedding matrix at the start of 

the model to convert words into vectors.

Given vocab size V and model dimension 

D, it’s a lookup table of shape [V x D]

Use masked attention inside each 
transformer block so each token can only 
see the ones before it

At the end, learn a projection matrix of 

shape [D x V] to project each D-dim 
vector to a V-dim vector of scores for 
each element of the vocabulary.

Train to predict next token using softmax

+ cross-entropy loss

Projection Matrix

[D x V]

is all you need
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3
Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D
Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D
Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021

Q: Any other way to 

describe this operation?
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D
Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021

Q: Any other way to 

describe this operation?

A: 16x16 conv with stride 

16, 3 input channels, D 

output channels
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D

D-dim vector per patch 

are the input vectors to 
the Transformer

Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D

D-dim vector per patch 

are the input vectors to 
the Transformer

Use positional 

encoding to tell 
the transformer 
the 2D position 

of each patch

Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D

D-dim vector per patch 

are the input vectors to 
the Transformer

Don’t use any 

masking; each 
image patch can 
look at all other 

image patches

Use positional 

encoding to tell 
the transformer 
the 2D position 

of each patch

Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D

D-dim vector per patch 

are the input vectors to 
the Transformer

Don’t use any 

masking; each 
image patch can 
look at all other 

image patches

Use positional 

encoding to tell 
the transformer 
the 2D position 

of each patch

Transformer 

gives an output 
vector per patch

Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Vision Transformers (ViT)

Input image:

e.g. 224x224x3

Break into patches

e.g. 16x16x3

Flatten and apply a linear 

transform 768 => D

D-dim vector per patch 

are the input vectors to 
the Transformer

Don’t use any 

masking; each 
image patch can 
look at all other 

image patches

Use positional 

encoding to tell 
the transformer 
the 2D position 

of each patch

Transformer 

gives an output 
vector per patch

Pooling

Average pool NxD vectors to 

1xD, apply a linear layer 
D=>C to predict class scores

Dosovitskiy et al, “An Image is Worth 

16x16 Words: Transformers for Image 

Recognition at Scale”, ICLR 2021
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Tweaking Transformers

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

The Transformer architecture has not 

changed much since 2017.

But a few changes have become common:
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Pre-Norm Transformer

Layer normalization is outside 

the residual connections

Kind of weird, the model can’t 

actually learn the identify function

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

Layer Normalization

+

Layer Normalization

+

Pre-Norm Transformer

Layer normalization is outside 

the residual connections

Kind of weird, the model can’t 

actually learn the identify function

Solution: Move layer 
normalization before the Self-
Attention and MLP, inside the 

residual connections. Training is 
more stable.

Baevski & Auli, “Adaptive Input Representations for Neural Language Modeling”, arXiv 2018
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

RMSNorm

Replace Layer Normalization 

with Root-Mean-Square 
Normalization (RMSNorm)

Input: x [shape D]
Output: y [shape D]

Weight: 𝛾 [shape D]

𝑦𝑖 =
𝑥𝑖

𝑅𝑀𝑆(𝑥)
∗ 𝛾𝑖

𝑅𝑀𝑆 𝑥 = 𝜀 +
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖
2

Training is a bit more stable

Zhang and Sennrich, “Root Mean Square Layer Normalization”, NeurIPS 2019
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020



Stanford CS231n 10th Anniversary April 24, 2025Lecture 8 - 115

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020

SwiGLU MLP:

Input: X [N x D]
Weights: W1 , W2 [D x H]

W3 [H x D]
Output: 

𝑌 = 𝜎 𝑋𝑊1 ⊙𝑋𝑊2 𝑊3

Setting H = 8D/3 keeps 

same total params
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

SwiGLU MLP

Classic MLP:

Input: X [N x D]
Weights: W1 [D x 4D]

W2 [4D x D]
Output: Y = σ(XW1)W2 [N x D]

Shazeer, “GLU Variants Improve Transformers”, 2020

SwiGLU MLP:

Input: X [N x D]
Weights: W1 , W2 [D x H]

W3 [H x D]
Output: 

𝑌 = 𝜎 𝑋𝑊1 ⊙𝑋𝑊2 𝑊3

We offer no explanation as 

to why these architectures 
seem to work; we attribute 
their success, as all else, 

to divine benevolence.

Setting H = 8D/3 keeps 

same total params
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in 

each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]

W2: [4D x D] => [E x 4D x D]

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in 

each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]

W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the 
experts. These are the active experts.

Increases params by E,
But only increases compute by A

Shazeer et al, “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, 2017
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x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in 

each block; each MLP is an expert

W1: [D x 4D] => [E x D x 4D]

W2: [4D x D] => [E x 4D x D]

Each token gets routed to A < E of the 
experts. These are the active experts.

Increases params by E,
But only increases compute by A

All of the biggest LLMs today (e.g. 
GPT4o, GPT4.5, Claude 3.7, Gemini 2.5 

Pro, etc) almost certainly use MoE and 
have > 1T params; but they don’t publish 

details anymore
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Tweaking Transformers

x1 x2 x3 x4

y1 y2 y3 y4

MLP MLP MLP MLP

Self-Attention

RMSNorm

+

RMSNorm

+
The Transformer architecture has not 

changed much since 2017.

But a few changes have become common:

- Pre-Norm: Move normalization inside 
residual

- RMSNorm: Different normalization layer
- SwiGLU: Different MLP architecture
- Mixture of Experts (MoE): Learn E 

different MLPs, use A < E of them per 
token. Massively increase params, 

modest increase to compute cost.
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Summary: Attention + Transformers

121

Attention: A new primitive that 

operates on sets of vectors

Transformer: A neural 

network architecture that 

uses attention everywhere

Transformers are the 

backbone of all large 

AI models today!

Used for language, 
vision, speech, …
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Next Time:
Detection, Segmentation, 
Visualization
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