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What,

What:

When:
Why:

when, and why backpropagation?

Backpropagation is one method of calculating gradients of the
output of a chain of operations with respect to each
component in the chain.

Used in anything and everything neural networks related.

Because some very smart people have built systems that allow
computers to automatically compute gradients via
backpropagation.



Definitions

We'll be exploring a simple neural network for the binary (0 or 1)
classification problem.

» Data: (X,y) are the dataset and corresponding labels
> XeRNV*2ye{0,1}N
» Model: fy(x) : R? — [0, 1] (probability x is in class 1)
» 0 represents all the parameters we want to optimize!
» Activation functions: ReLU (xy), Sigmoid (o(x))
> x; = max(0,x)
> 000 = 1ok
» Binary Cross Entropy Loss:
> Li(pi,yi) = —(yi - log pi + (1 — yi) - log(1 — p;))
> Upy) =+ Z,{V:l Li(pisyi)



The Network

fo(x) = o(max(0, xw1)wy + b)

z

We want to optimize the network’s parameters 6 which consist of
wi € R2%3 w, € R3*! and b € R1L.



Gradient Calculations fo(x) = o(max(0, xwy )w, + b)

z

We want to calculate the gradient of the binary cross entropy loss
applied to the output of the network

N
(X y) = 1 3 Gl (x). )
Ypred i=1

= %Z — (i - log fy(xi) + (1 — yi) - log(1 — fy(x;)))
i—1

with respect to wy, wp, and b.



Gradient Calculations fo(x) = o(max(0, xwy )w, + b)

z

From the chain rule, we have
OL(-) _0L(-)OYpred 02
ow,  0y,q 0Oz 0w,
D) _00(-)DYorea D2
db OYpea Oz Ob
9U(-) _0U(-)ymeadz D0 9xwy
Ow, OYpea 02 OhOxw; Ow,

where h = max(0, xwy).



h
Gradient Calculations f3(x) = o(max(0, xwy) wy + b)

z

Note that £(f5(X),y) is a scalar value while z € RV, so how is the
gradient calculated?

o) Tou)y 8"

8 ypred 8Ypred]_ aypred,7

What about the derivative of yyeq with respect to z? Both are
vectors of size N. Since ypreq = 0(z) is an element-wise operation,

0 Ypred

Oz =o0(z) (1 -0(2)) = Ypred * (1- ypred)



h
Gradient Calculations f3(x) = o(max(0, xwy) wy + b)

z

Next, we want to calculate %. Here z € RN and h € RV*3,

We have z = hwy + b which looks something like

7 hi hiz o his| Ty,
=1 : : : W22
zy hyi hnz  hns] LW23

Since z; = hjywo 1 + hjzwa 5 + hizws 3, the gradient of z w.r.t.
each row of h is w, .

On the other hand, the gradient of z w.r.t. wy; depends on
h1j7 ey th.



h
Gradient Calculations f3(x) = o(max(0, xwy) wy + b)

z

What about the gradient for the bias b?
b is automatically broadcasted in the equation but can be written
asz=hwy +17h where 1 € RN. Thus, the gradient is

0z

ZZ 1T
ob



h

Gradient Calculations f3(x) = o(max(0, xwy) wy + b)

z

H oh O Xxw1
To calculate the gradient of wy, we need D, and Tw,
dh

Oxw, '

For we have

0 xwy

0 max(0,xwy); )1 if (xwy); >0
~ 10 otherwise

For 2XW1 \ve have
ow,

hi1 hiz i3 X1 X12
. . L . . w111 Wi12 w13
’ Wi21 Wi22 W1.23

hni hno s XN1  XN2 N

Similar to wy, the gradient for each column of w; depends on x.



Additional Resources

v

CS231N page on backpropagation

v

Justin Johnson's notes on matrix gradient calculations

v

Erik Learned-Miller's notes on vector/matrix/tensor
derivatives

» The Matrix Cookbook

» Gregory Gundersen's notes on the reparameterization trick


https://cs231n.github.io/optimization-2/
https://cs231n.stanford.edu/handouts/linear-backprop.pdf
https://cs231n.stanford.edu/vecDerivs.pdf
https://cs231n.stanford.edu/vecDerivs.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://gregorygundersen.com/blog/2018/04/29/reparameterization/

Appendix

Batched Linear Gradients

Consider the equation Y = XW where Y € RNxDy X ¢ RN*Dx
and W € RP<*Dy On the forward pass, the matrix multiplication
can be rewritten as

Dy

Yij = Z Xik Wi
k=1

Given this formula, how do we calculate the gradlents aW and

a—y? What if we add a loss function £(Y) : RVXPy — R? How do

8€(Y) and 6£(Y)7

we calculate



Appendix

Batched Linear Gradients Yij= ZkDil Xik Wy

First, let us focus on the gradient with respect to one element in
the weight matrix aW which should have the same shape as

Y € RVxDy,
aY;
oy 0 oW, Ol To Xik 0
oW, 5 ik
. 0 g‘\//VNf 0 0 Xnk 0
k



Appendix
Batched Linear Gradients Yij= ZkDil Xik Wy

The loss gradient Z4Y) also has shape RV*?¥ since £(Y) is a scalar and can be

written as
auy)y .. 24Y)
o Yll o YlDy
ouY) _
oy : : :
auy) . oy
Yy, 9 Vnp,
For a specific W,;, we have
aLY) 8€(Y 8Y 8E(Y) T0LY)
= Xi X
oW, oY, Z oY, oy ),
ij Jj
Thus, a—W xTeay) azz . Intuitively, this makes sense since the gradients of

each weight should be aggregated across the batch of inputs.



Appendix

Batched Linear Gradients

Similarly, for 2X- € RV*Pr,
ik

0
oY _|av
X, 9 Xy
| 0
which gives us
ouy) _ oUY) oYy
X, 4 oY, 09X,
ij

Thus, 2uy) —

Dy

:ZW

Dx
Yij = Zk:l Xik Wi

0 0
=Wk -+ Wp,
0 0

kj -

a;(yY) _ (a;(yv) WT>’k

T = %(YY)WT. This indicates that the gradient of the k-th
component of a single input X; depends on the corresponding row W in the

weight matrix.



