
An Exercise in Backpropagation

Matthew Jin

Spring 2025

What, when, and why backpropagation?

What: Backpropagation is one method of calculating gradients of the
output of a chain of operations with respect to each
component in the chain.

When: Used in anything and everything neural networks related.

Why: Because some very smart people have built systems that allow
computers to automatically compute gradients via
backpropagation.

Definitions

We’ll be exploring a simple neural network for the binary (0 or 1)
classification problem.

▶ Data: (X, y) are the dataset and corresponding labels
▶ X ∈ RN×2, y ∈ {0, 1}N

▶ Model: fθ(x) : R2 → [0, 1] (probability x is in class 1)
▶ θ represents all the parameters we want to optimize!

▶ Activation functions: ReLU (x+), Sigmoid (σ(x))
▶ x+ = max(0, x)
▶ σ(x) = 1

1+e−x

▶ Binary Cross Entropy Loss:
▶ ℓi (pi , yi) = −(yi · log pi + (1− yi) · log(1− pi))
▶ ℓ(p, y) = 1

N

∑N
i=1 ℓi (pi , yi)

The Network

x1

x2

h1

h2

h3

b

+

+

+

z ypred

fθ(x) = σ(max(0, xw1)w2 + b︸ ︷︷ ︸
z

)

We want to optimize the network’s parameters θ which consist of
w1 ∈ R2×3, w2 ∈ R3×1, and b ∈ R1.

Gradient Calculations fθ(x) = σ(max(0, xw1)w2 + b︸ ︷︷ ︸
z

)

We want to calculate the gradient of the binary cross entropy loss
applied to the output of the network

ℓ(fθ(X)︸ ︷︷ ︸
ypred

, y) =
1

N

N∑
i=1

ℓi (fθ(xi), yi)

=
1

N

N∑
i=1

− (yi · log fθ(xi) + (1− yi) · log(1− fθ(xi)))

with respect to w1, w2, and b.

Gradient Calculations fθ(x) = σ(max(0, xw1)w2 + b︸ ︷︷ ︸
z

)

From the chain rule, we have

∂ ℓ(·)
∂w2

=
∂ ℓ(·)
∂ ypred

∂ ypred
∂ z

∂ z

∂w2

∂ ℓ(·)
∂ b

=
∂ ℓ(·)
∂ ypred

∂ ypred
∂ z

∂ z

∂ b

∂ ℓ(·)
∂w1

=
∂ ℓ(·)
∂ ypred

∂ ypred
∂ z

∂ z

∂ h

∂ h

∂ xw1

∂ xw1

∂w1

where h = max(0, xw1).

Gradient Calculations fθ(x) = σ(

h︷ ︸︸ ︷
max(0, xw1)w2 + b︸ ︷︷ ︸

z

)

Note that ℓ(fθ(X), y) is a scalar value while z ∈ RN , so how is the
gradient calculated?

∂ ℓ(·)
∂ ypred

=
[

∂ ℓ(·)
∂ ypred1

· · · ∂ ℓ(·)
∂ ypredn

]⊤
What about the derivative of ypred with respect to z? Both are
vectors of size N. Since ypred = σ(z) is an element-wise operation,

∂ ypred
∂ z

= σ(z) · (1− σ(z)) = ypred · (1− ypred)

Gradient Calculations fθ(x) = σ(

h︷ ︸︸ ︷
max(0, xw1)w2 + b︸ ︷︷ ︸

z

)

Next, we want to calculate ∂ z
∂ h . Here z ∈ RN and h ∈ RN×3.

We have z = hw2 + b which looks something likez1
...
zN

 =

h11 h12 h13
...

...
...

hN1 hN2 hN3


w2,1

w2,2

w2,3


Since zi = hi1w2,1 + hi2w2,2 + hi3w2,3, the gradient of z w.r.t.
each row of h is w⊤

2 .

On the other hand, the gradient of z w.r.t. w2j depends on
h1j , . . . , hNj .

Gradient Calculations fθ(x) = σ(

h︷ ︸︸ ︷
max(0, xw1)w2 + b︸ ︷︷ ︸

z

)

What about the gradient for the bias b?
b is automatically broadcasted in the equation but can be written
as z = hw2 + 1⊤b where 1 ∈ RN . Thus, the gradient is

∂ z

∂ b
= 1⊤

Gradient Calculations fθ(x) = σ(

h︷ ︸︸ ︷
max(0, xw1)w2 + b︸ ︷︷ ︸

z

)

To calculate the gradient of w1, we need ∂ h
∂ xw1

and ∂ xw1
∂ w1

.

For ∂ h
∂ xw1

, we have

∂ max(0, xw1)ij
∂ xw1

=

{
1 if (xw1)ij > 0

0 otherwise

For ∂ xw1
∂ w1

, we haveh11 h12 h13
...

...
...

hN1 hN2 hN3

 =


x11 x12

...
...

xN1 xN2

[
w1,11 w1,12 w1,13

w1,21 w1,22 w1,23

]
+

Similar to w2, the gradient for each column of w1 depends on x.

Additional Resources

▶ CS231N page on backpropagation

▶ Justin Johnson’s notes on matrix gradient calculations

▶ Erik Learned-Miller’s notes on vector/matrix/tensor
derivatives

▶ The Matrix Cookbook

▶ Gregory Gundersen’s notes on the reparameterization trick

https://cs231n.github.io/optimization-2/
https://cs231n.stanford.edu/handouts/linear-backprop.pdf
https://cs231n.stanford.edu/vecDerivs.pdf
https://cs231n.stanford.edu/vecDerivs.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://gregorygundersen.com/blog/2018/04/29/reparameterization/

Appendix
Batched Linear Gradients

Consider the equation Y = XW where Y ∈ RN×Dy , X ∈ RN×Dx ,
and W ∈ RDx×Dy . On the forward pass, the matrix multiplication
can be rewritten as

Yij =
Dx∑
k=1

XikWkj

Given this formula, how do we calculate the gradients ∂ Y
∂W and

∂ Y
∂ X ? What if we add a loss function ℓ(Y) : RN×Dy → R? How do

we calculate ∂ ℓ(Y)
∂W and ∂ ℓ(Y)

∂ X ?

Appendix
Batched Linear Gradients Yi j =

∑Dx

k=1 XikWkj

First, let us focus on the gradient with respect to one element in
the weight matrix ∂ Y

∂Wkj
which should have the same shape as

Y ∈ RN×Dy .

∂ Y

∂Wkj

=


0 · · · ∂ Y1j

∂Wkj
· · · 0

...
. . .

...
. . .

...

0 · · · ∂ YNj

∂Wkj
· · · 0

 =

0 · · · X1k · · · 0
...

. . .
...

. . .
...

0 · · · XNk · · · 0



Appendix
Batched Linear Gradients Yi j =

∑Dx

k=1 XikWkj

The loss gradient ∂ ℓ(Y)
∂ Y

also has shape RN×Dy since ℓ(Y) is a scalar and can be

written as

∂ ℓ(Y)

∂ Y
=


∂ ℓ(Y)
∂ Y11

· · · ∂ ℓ(Y)
∂ Y

1Dy

...
. . .

...
∂ ℓ(Y)
∂ Y

N1
· · · ∂ ℓ(Y)

∂ Y
NDy


For a specific Wkj , we have

∂ ℓ(Y)

∂Wkj

=
∑
i j

∂ ℓ(Y)

∂ Yi j

· ∂ Yi j

∂Wkj

=
N∑
i=1

Xik ·
∂ ℓ(Y)

∂ Yi j

=

(
X⊤ ∂ ℓ(Y)

∂ Y

)
kj

Thus, ∂ ℓ(Y)
∂ W

= X⊤ ∂ ℓ(Y)
∂ Y

. Intuitively, this makes sense since the gradients of

each weight should be aggregated across the batch of inputs.

Appendix
Batched Linear Gradients Yi j =

∑Dx

k=1 XikWkj

Similarly, for ∂ Y
∂ X

ik
∈ RN×Dy ,

∂ Y

∂ Xik

=



0 · · · 0
...

. . .
...

∂ Yi1
∂ X

ik
· · ·

∂ YiDy

∂ X
ik

...
. . .

...

0 · · · 0


=



0 · · · 0
...

. . .
...

Wk1 · · · WkDy

...
. . .

...

0 · · · 0


which gives us

∂ ℓ(Y)

∂ Xik

=
∑
i j

∂ ℓ(Y)

∂ Yi j

· ∂ Yi j

∂ Xik

=

Dy∑
j=1

Wkj ·
∂ ℓ(Y)

∂ Yi j

=

(
∂ ℓ(Y)

∂ Y
W⊤

)
ik

Thus, ∂ ℓ(Y)
∂ X

= ∂ ℓ(Y)
∂ Y

W⊤. This indicates that the gradient of the k-th

component of a single input Xi depends on the corresponding row Wk in the

weight matrix.

