CS231N: Final Project Overview

Emily Jin

(adapted from Chris Waites)

Agenda

- Project Expectations
 - Overview
 - FAQ: Does my project meet expectations?
- Picking a project idea
 - Sources of inspiration
 - Reading papers efficiently
- Project deliverables
 - Proposal, milestone, and final report
 - Due dates, expectations, logistics
 - Support

- Fairly open-ended, anything related to vision. Must include visual data.
- Potential Project Ideas
 - https://docs.google.com/document/d/1Kcf8S1UVPo4TAcoJvn9d6uj_wl2Ah9wj/edit
- Completed in groups of 1-3 people
 - Project expectations are higher for groups with more people
- Two Types of Projects
 - Applications: apply vision techniques to your particular domain or interest (e.g. medicine, physics, etc.)
 - Models: build a new model (algorithm) and apply it to tackle vision tasks. This track might be more challenging, and could lead to a piece of publishable work

The final report has the following structure:

- Title, Author(s)
- Abstract
- Related Work
- Methods
- Data Description
- Experiments and Results
- Conclusion
- Supplementary Material (optional)

Does my project meet expectations?

- Rule of thumb: how much effort are you putting into your project?
- Strong projects might...
 - Propose a novel variant of a technique (which takes a lot of effort)
 - Adapts an existing technique to a totally new problem (which takes a lot of effort)
- Weaker projects might...
 - Spend several weeks collecting/cleaning data rather than testing hypotheses
 - Clone an existing repo and do minimal stitching to make it work for a Kaggle competition

This does not mean:

- Your project has to be strictly novel to get a good grade (although, we encourage this!)
- You have to beat the state-of-the-art performance to get a good grade (you don't have to come up with the next best object detector to test an interesting hypothesis)

This does mean:

- You need to put a significant effort into your investigation, and you may have to try many different approaches
- In your analysis, ask yourself:
 - Are you interpreting and understanding your results, or merely stating them?
 - Are you just plotting a loss curve, or are you evaluating the results of your approach from many different angles?

Picking a Project Idea

Consideration of Interests

- Do what is important or interesting to you, not what seems easiest.
- You will be far more motivated if you're invested in what you're doing
- What do you really care about? Healthcare? Sports? Ethics? You can probably find its intersection with computer vision

Practical Considerations

- 1. Data: Is there existing data for this problem? Will I need to spend weeks collecting it myself?
- 2. Code & framework: Will I have to implement this myself, or is there an existing implementation.

Picking a Project Idea: Sources of Inspiration

Conferences:

- CVPR: IEEE Conference on Computer Vision and Pattern Recognition
- ICCV: International Conference on Computer Vision
- ECCV: European Conference on Computer Vision
- NeurIPS: Neural Information Processing Systems
- ICLR: International Conference on Learning Representations
- ICML: International Conference on Machine Learning

Note: Do not even begin to try to read through all of these papers, or even their titles. There are far too many. Use CMD+F to find papers with relevant keywords.

Picking a Project Idea: Sources of Inspiration

Additional resources:

- Stanford Vision and Learning Lab (SVL) Publications
- Awesome Deep Vision
- Papers With Code
- Previous CS229 Projects

Picking a Project Idea: Reading Papers

How to read papers efficiently

- Do not read a paper linearly on your first pass
- First, read the abstract (word for word) as well as the figures & captions
- Does the paper still seem relevant? If so, read the methods as well as the results
- Finally, read the entire paper linearly (if the additional detail seems useful)

Papers are not always the most efficient way to digest an idea. Also try looking for:

- Talks, videos, or blog posts on the topics
- Github repos, containing actual code for the idea

Project Deliverables

Project Proposal (Due Friday, 04/25)

- One paragraph (200-400) words describing:
 - Problem and motivation
 - Reading material
 - Data and collection process
 - General sense of your model / algorithm
 - Evaluation (qualitative and quantitative)

Project Milestone (Due Friday, 05/16)

- 2-3 pages using the provided template
- Title, introduction, problem statement, technical approach, preliminary experimental results

Final Report (Due Wednesday, 06/04)

- 6-8 pages using provided template
- Title, abstract, introduction, related work, data, methods, experiments, conclusion

Poster Session (in-person) (On Wednesday, 06/11) **Poster PDF / Code (online)** (Due Wednesday, 06/11)

Support: CA Areas of Specialty

Chaitanya Patel

TA role: Head TA

Research interests: 3D vision, human

perception, video

Gabriela Aranguiz-Dias

TA role: Cloud Credit Lead

Research interests: Synthetic data validation, metrics for agentic AI efficiency, emotional

cognition in LLMs

Yunfan Jiang

TA role: Website Lead

Research interests: Robot learning, embodied

AI, reinforcement learning

Kyle Sargent

TA role: Assignment 2 lead

Research interests: 2D and 3D generative

models

Zhoujie Ding

TA role: Ed Lead

Research interests: Trustworthy ML

Emily Jin

TA role: Section Lead

Research interests: visual reasoning, vision and language, representation learning

Tiange Xiang

TA role: Midterm Exam Lead

Research interests: 3D generative models, 3D

human stuff

Sabri Eyuboglu

TA role: Final Grading Lead

Research interests: Machine learning

systems, vision-language models

Matthew Jin

TA role: Section Lead

Research interests: Efficient ML, ML systems

Support: CA Areas of Specialty

Jiaman Li

TA role: Student liaison/ OAE/Honor Code

Lead

Research interests: 3D Human Motion

Modeling, Humanoid Robot Learning

Fan-Yun Sun

TA role: Project Lead

Research interests: 3D scene generation and

world modeling; embodied AI

Minji Kang

TA role:

Research interests: Al + biology, Interpretability of deep learning

Ryan Li

TA role: Assignment 3 Lead

Research interests: Large Language Models, Post Training, Preference Tuning, Agentic Applications

Iris Xia

TA role: Logistics Lead

Research interests: ML for Sustainability, Remote Sensing, Satellite AI, Foundational Models

Shutong Zhang

TA role:

Research interests: 3D vision, Manipulation

Rahul Mysore Venkatesh

TA role: Cloud Credit Lead

Research interests: World modeling; 3D scene understanding; self-supervised segmentation; intuitive physics

Serena Zhang

TA role: Midterm Exam Lead

Research interests: medical imaging and vision-language models, healthcare/biology AI

Stephen Tian

TA role:

Research interests: Robot learning, 3D vision, reinforcement learning

Support: CA Areas of Specialty

Aditesh Kumar

TA role: Midterm Lead

Research interests: Scene representations,

safe reinforcement learning

Wenlong Huang

TA role: Project Lead

Research interests: Robotics

Cristóbal Eyzaguirre

TA role:

Research interests: Vision, Video,

Multimodality

Questions?

Q: Can I change my project after the proposal, before the milestone?

A: Yes, the proposal is to make sure you have a plausible project direction. If you need to change project directions, we understand. Just check with a CA in OH.

Q: Can I change my project after the milestone?

A: In general, we do not encourage this. At this point in the course, there will be little time to put together a sufficient project.

Q: How many cloud compute credits will I get?

A: Each student will receive 50 USD in GCP credits.